Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Идеал газдар туралы

лекулалардың әсерлесуін сипаттайтын шамалармен байланысы тіптен жоқ.
(9)
Қатынас тек газдардың универсал тұрақтысына ғана кері пропорционал.
Бұдан біз мынадай қортынды шығаруымызға болады: жоғарыда барлық инертті газдар үшін көрсетілген біртұтас келісілген масштабты схема осы газдардағы кризистік құбылыстар үшін де орындалады. Бұл тұжырымның дұрыс екендігіне төменгі 3- кестеде келтірілген шамалардың мәндерінен көз жеткізуге болады. Бұл таблицада инертті газдардың кризистік нүктесін анықтайтын , W параметрлері бойынша алынған келтірілген мәндері берілген.

3 Кесте. Кризистік параметрлер және олардың келтірілген мәндері

Параметрлер Ne Ar Kr Xe Орташасы

44,4 150,0 209,4 289,7 –

2,76 4,90 5,50 5,84 –

42, 75 91 118 –

1,05 1,06 1,04 1,02 1,04±0,02

2,50 2,34 2,34 2,36 2,38±0,08

3,4 3,5 3,2 3,5 3,4±0,1

Бұдан біз барлық газдар үшін анықталған шамалардың үйлесімді масштабы және оның дәлдігі өте жақсы, ал оның орташадан ауытқуы бар болғаны 4-5%-тен аспайтынын көреміз. Әсіресе соңғы салыстырмалы шамалар барлық газдар үшін бірдей. Бұл шамалардың ауытқуы ең баста тәжірибеде анықталған мен W –ның ауытқуы арқылы анықталады. Сөйтіп келтірілген термодинамикалық шамалар барлық газдардың кәдімгі күйімен кризистік күйлері үшін айырымы жоқ екен. Соңғы (8) теңдеуіндегі а мен b тұрақтылары әр түрлі. Сөйтіп газдың индивидуальды газ тұрақтысы олардың молярлық газ тұрақтылары -дан басқаша. Олай болса универсал газ тұрақтысы R газдың әр моліндегі молекула санына пропорционал екен. Онда кризистік күйде R-дің азаюы газ тұрақтысын жасаушы газдың құрылысын анықтайтын бөлшек санының кемуінен деуге болады. Бұл жағдайда газ молекулалары кластерге бірігіп, құрылыс кірпіші – болып табылатын молекулалардың саны азаяды деп түсіну керек. Кризистік күйден өткеннен соң кластер ыдырап құрылыс кірпішінің саны көбейе бастайды. Сөйтіп R-дің мәні арта түседі де оның мәні молярлық мәніне жетеді. Әдетте кризистік күйге жақын жағдайда болатын құбылыстарды зерттегенде практикада әр жүйе үшін өзінің жекелеген газ тұрақтысын пайдаланады. Ал біздің жағдайымызда R мәні барлық инертті газдар үшін бірдей болып шықты, сонымен бірге келтірілген шамаларда бірдей (әрине қателіктер шегінде алғанда). Мұндай болудың себебі қарастырып отырған газдарымыздың атомдарының құрылысының ұқсастығында және одан құралған молекулалардың бір-біріне ұқсас болуында. Олардағы электрондар қабықшасы толығымен толытырылған, жабық. Сыртында бос электрондар жоқ. Сондықтан олардың химиялық реакцияға қатысуы өте қиын мәселе. Сол себепті оларды инертті газдар деп атаған. Ол газдардың физика –химиялық қасиеттері өте ұқсас. Егер де мәселені өте дәл қарастырғымыз келсе молекулалардың әр сорты үшін әр түрлі күй теңдеулерін жазуға тиіспіз. Күйдің дәл теңдеуі вириал теңдеулеріндегі түрлі вириал коэффиценттері арқлы өрнектеледі. Міне сол себепті осы уақытқа дейін әр түрлі заттардың қасиеттерін зерттегенде әртүрлі жуықтап алған күй теңдеулерін пайдаланып келген. Сөйтіп, инертті газдар үшін жай газ күйінде де, олардың параметрлері біртұтас үлесімді масштабта болса, онда сұйық бетіндегі қаныққан буларының қасиеттері де осындай үлесімді параметрлерімен сипатталуы тиіс. Сол тәрізді осы газдардың қатты күйлерінен сұйыққа ауысу фазалық қисығының айналасындағы құбылыстарда осы суреттемеден сыртқа шықпауы тиіс. Біз бұл жерде мұндай мәселелерді қарастыруды кейінге қарлдыра тұрып, бір айрықша мәселеге тоқтала кетпекпіз. Атап айтқанда радон Rn газы да инертті газ тобына жатады. Біз, бірақ оның қасиеттеріне жоғарыда тоқталмай кеттік. Оның себебі қазірге дейін радонның атомдарының өз-ара әсерлесуі жөнінде тәжірибеден алынған мәлімет жоқ. Оның себебі бұл газдың атомдарының радиоактивтілігімен оның жеткілікті мөлшері зерттеушілер қолына түсе бермейтінінде болу керек. Дегенмен кейінгі кезде радонның өте тығыз және коденсацияланған күйінің параметрлері өлшене бастады. Оның үстіне жалпы инертті газдардың бәрінің параметрлері біртұтас үйлесімді масштабта деп есептесек, онда радон параметрлерінің келтірілген мәндерін үйлесімді түрде апроксимациялауға болады. Дәл осылайша табылған радон атомдарының параметрлерінің мәндері мен олардың келтірілген мәндері 4-кестеде берілген. Сонымен қатар осы апроксимация әдісімен табылған а мен b параметрлерінің мәндері және келтірілген мәндері де осы таблицада.
4 Кесте. Радон атомдарының әсерлесуінің параметрлері.
Параметрлер Мәндері Келтірілген мәндері

377 1.07±0.01
6.6 3.7±0.2
62.4 1.1±0.03

6.28 0.135±0.006

4.68±0.04 –
W, Mэв 30.2±0.4 –
Сөйтіп, басқа физикалық тәжірибелерден осы кезге дейін анықталмаған радон газының атомдарының әсерлесу параметрлерін және термодинамикалық параметр мәндерін осы скейлингтік әдіспен тауып отырмыз. Бұл тапқан шамалардың мәндері жалпы инертті газдардың параметрлері өзгеруінің жалпы заңдылықтарына бағынып тұр. Әсіресе олардың келтірілген мәндері басқа инертті газдардағы мәндермен тең немесе соған өте жақын. Ал оларды анықтаудың қателігі 4 5 проценттен аспайды.
Сонымен жоғарыда жасалған анализ газдардың барлық қасиеттерін сипаттайтын көптеген термодинамикалық параметрлерді тәжірибеде өте жақын және түсінікті түрде көрсетті. Мұндай мәселенің үйлесімді түрде шешілуінің негізі мынада деп есептейміз.
1) Инертті газдардың атомдарының өзара әсерлесуі енгізілетін потенциалдың түріне (Леонард-Джонс, Морзе, т.б.) байланысты емес болуында. Біз бұл жерде потенциалдың екі ғана параметрін , W жұмысқа енгіздік. Атомдардың әсерлесуінің қысқа радиусты бөлігі ғана еске алынды. Әсерлесудің үлкен радиусты бөлігі есепке енген жоқ. Потенциалдың бұрышқа, т.б. микропараметрлерге еш байланысы жоқ деп есептедік. Олай болса ең жақын көрші орналасқан атомдар ғана әсерлеседі, яғни әсерлесу күшін бұл жағдайда қаныққан күш деп атайды. Мұның барлығы қарастырып отырған макрожүйеміздің молекулалары сфералық формалы болуынан деп есептеуге болады.
2) Сөйтіп, потенциалдың алыстан әсерлесу бөлігін есептен шығарып тастауға болады.
3) Кванттық эффекттерді де еске алғанымыз жоқ.
4) Сонымен бірге үш, төрт, т.б. көп бөлшекті әсерлесу түрлерінде есепке қосқанымыз жоқ.
Б.М.Смирнов осы инертті газдардың өте тығыз және конденсацияланған күйін сипаттау үшін Леонард-Джонс потенциалы жақсы келмейтінін жақында көрсеткен. Ал қысқа радиусты екі бөлшектік симметриялық потенциал мұндай жүйелерді сипаттауы өте үйлесімді екенін біз көріп отырмыз.
Мұндай анализді сфералық молекулалары бар басқа екі атомды жүйелерге, әсіресе қолдануға болатын келесі жұмыста қарастырамыз. Мұндай схема тіпті фуллерен молекулалары үшін де өте қолайлы екенін Елецкий А.В. мен Смирнов Б.М. көрсеткен.
Жалпы алғанда қарастырып отырған әдісіміз сфера түріндегі молекулалары бар жүйелер үшін кеңінен қолдануға болады. Тек бұл жағдайда молекула ішіндегі атомдық әсерлесу молекуланың спиндік бағытталуына байланысы әлсіз болса жеткілікті. Байланысқан жүйенің молекулалары еркін айналып жүретіндей күйде болса жетеді. Ал егер молекулалардың дипольдік моменті болса онда әсерлесу потенциалы күрделі бола бастайды. Мұндай жүйелердің сыры тіптен басқаша.

Пайдаланылған әдебиеттер
1.Матвеев А.Н. Молекулярная физика, М. 1987.
2.Reid R.C. , Parasite I.M. , Poling B.E. The properties of goes and Liquids, N.Y.1987.
3. Rabiovich V.A. Thermodynamical properties of Ne, Ar, Kr, Xe, W. 1988.
4. Смирнов Б.М. Успехи физических наук. 1994, 164, 1165.
5. Елецкий А.В., Смирнов Б.М. Успехи физических наук 1995, т 165, с977.

12
скачать работу

Идеал газдар туралы

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ