Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Использование альтернативных источников энергии

ется от контакта со
стенкой с помощью магнитного поля создаваемого как внешними магнитными
катушками, так и током протекающим по самой плазме. Характерная плотность
плазмы в токамаке 100 000 000 000 000 частиц в см3 , температура Т = 10-20
кеВ (1 еВ ¦ 12000¦C) и давление 2-3 атм. Для того, чтобы удержать это
давление требуется магнитное поле с индукцией В ¦ 1 Т. Однако плазменные
неустойчивости ограничивают допустимое давление плазмы на уровне нескольких
процентов от магнитного давления и поэтому требуемое магнитное поле
оказывается в несколько раз выше, чем то, которое нужно для равновесия
плазмы. Для избежания энергетических расходов на поддержание магнитного
поля, оно будет создаваться в реакторе сверхпроводящими магнитами. Такая
технология уже имеется в нашем распоряжении - один из крупнейших
экспериментальных токамаков, Т-15, построенный несколько лет назад в
России, использует сверхпроводящие магниты для создания магнитных полей.

Токамак реактор будет работать в режиме самоподдерживающегося термоядерного
горения, при котором высокая температура плазмы обеспечивается за счет
нагрева плазмы заряженными продуктами реакции (3) - альфа-частицами (ионами
Не). Для этого, как видно из условия Лоусона, нужно иметь время удержания
энергии в плазме не меньше 5 с. Большое время жизни плазмы в токамаках и
других стационарных системах достигается за счет их размеров, и поэтому
существует некий критический размер реактора. Оценки показывают, что
самоподдерживающаяся реакция в токамаке возможна в том случае, если большой
радиус плазменного тора будет 7-9 м. Соответственно, токамак-реактор будет
иметь полную тепловую мощность на уровне 1 ГВт. Удивительно, что эта цифра
примерно совпадает с мощностью минимального инерционного термоядерного
реактора.

За прошедшие годы достигнут впечатляющий прогресс в понимании физических
явлений, ответственных за удержание и устойчивость плазмы в токамаках.
Разработаны эффективные методы нагрева и диагностики плазмы, позволившие
изучить в нынешних экспериментальных токамаках те плазменные режимы,
которые будут использоваться в реакторах. Нынешние крупные
экспериментальные машины - JET (Европа), JT60-U (Япония), Т-15 (Россия) и
TFTR (США) - были построены в начале 80 годов для изучения удержания плазмы
с термоядерными параметрами и получения условий, при которых нагрев плазмы
сравним в полным выходом термоядерной мощности. Два токамака, TFTR и JET
использовали DT смесь и достигли соответственно 10 и 16 МВт термоядерной
мощности. В экспериментах с DT смесью JET получил режимы с отношением
термоядерной мощности к мощности нагрева плазмы, Q=0.9, и токамак JT60-U на
модельной DD смеси достиг Q = 1.06. Это поколение токамаков практически
выполнило свои задачи и создало все необходимые условия для следующего шага
- строительство установок нацеленных на исследование зажигания, Q Ё 5, и
уже обладающих всеми чертами будущего реактора.

В настоящее время ведется проектирование такого первого экспериментального
термоядерного реактора - ИТЭР. В проекте участвуют Европа, Россия, США и
Япония. Предполагается, что этот первый термоядерный реактор токамак будет
построен к 2010 г.

Существуют огромные запасы топлива для термоядерной энергетики. Дейтерий -
это широко распространенный в природе изотоп, который может добываться из
морской воды. Тритий будет производится в самом реакторе из лития. Запасы
дейтерия и лития достаточны для производства энергии в течении многих тысяч
лет и это топливо, как и продукт реакций синтеза - гелий - не радиоактивны.
Радиоактивность возникает в термоядерном реакторе из-за активации
материалов первой стенки реактора нейтронами. Известны низкоактивирующиеся
конструкционные материалы для первой стенки и других компонент реактора,
которые за 30-50 лет теряют свою активность до полностью безопасного
уровня. Можно представить, что реактор, проработавший 30 лет и выработавший
свой ресурс, будет законсервирован на следующие 30-50 лет, а затем
конструкционные материалы будут переработаны и вновь использованы в новом
термоядерном реакторе. Кроме дейтерий- тритиевой реакции, которая имеет
высокое сечение при относительно низкой температуре, и следовательно легче
всего осуществима, можно использовать и другие реакции . Например, реакции
D с Не3 и p с В11 не дают нейтронов и не приводят к нейтронной активации
первой стенки. Однако, условия Лоусона для таких реакций более жесткие и
поэтому нынешняя термоядерная программа в качестве первого шага нацелена на
использование DT смеси.

Несмотря на большие успехи достигнутые в этом направлении, термоядерным
реакторам предстоит еще пройти большой путь прежде, чем будет построен
первый коммерческий термоядерный реактор. Развитие термоядерной энергетики
требует больших затрат на развитие специальных технологий и материалов и на
физические исследования. При нынешнем уровне финансирования термоядерная
энергетика не будет готова раньше, чем 2020-2040 г.
                         Электроводордный генератор
В результате проведенных работ изобретено и патентуется по системе РСТ
(международная заявка RU98/00190 от 07.10.97 г.) простое
высокопроизводительное устройство для разложения воды и производства из нее
беспрецедентно дешевого водорода методом гравитационного электролиза
раствора электролита, получившее название “электроводородный генератор
(ЭВГ)”. Он приводится в действие механическим приводом и работает при
обычной температуре в режиме теплового насоса, поглощая через свой
теплообменник необходимое при этом тепло из окружающей среды или утилизируя
теплопотери промышленных или транспортных энергоустановок. В процессе
разложения воды подведенная к приводу ЭВГ избыточная механическая энергия
может быть на 80 % преобразована в электроэнергию, которая затем
используется любым потребителем на нужды полезной внешней нагрузки. При
этом на каждую единицу затраченный мощности привода генератором в
зависимости от заданного режима работы поглощается от 20 до 88
энергетических единиц низкопотенциального тепла, что собственно и
компенсирует отрицательный термический эффект химической реакции разложения
воды. Один кубический метр условного рабочего объема генератора,
работающего в оптимальном режиме с КПД 86-98 %, способен за секунду
произвести 3,5 м 3 водорода и одновременно около 2,2 МДж постоянного
электрического тока. Единичная тепловая мощность ЭВГ в зависимости от
решаемой технической задачи может варьироваться от нескольких десятков ватт
до 1000 МВт. Расчетный удельный расход энергии на производство
газообразного водорода составляет 14,42 МДж?м-3. Стоимость его производства
(0,0038 $/ м3) становится в 1,5-2 раза ниже суммарной стоимости добычи и
транспортировки природного газа. Широкий диапазон регулирования и
неординарные удельные показатели процесса позволяют с гарантированным
успехом применить изобретение в большой и малой энергетике, на всех видах
транспорта, в сельском и коммунальном хозяйствах, в химической, цементной,
целюлозно-бумажной, холодильной, атомной и космической промышленности,
цветной и черной металлургии, при опреснении морской воды, проведении
сварочных работ и т. д..
Физическая сущность рабочего процесса ЭВГ весьма проста и является
логическим развитием известных физических опытов Толмена и Стюарта,
осуществленных ими в 1916 году. Известно, что электролит при растворении
диссоциирует на ионы, которые гидратируются молекулами воды. В результате
вокруг них образуются гидратные оболочки различной прочности . Энергия
взаимодействия гидратированных разноименных ионов друг с другом резко
уменьшается и становится близкой энергии броуновского движения молекул
воды. Если концентрированный раствор диссоциированного электролита,
имеющего значительную разницу масс аниона и катиона, поместить в сильное
искусственное гравитационное (инерционное) поле, например, вращать его в
емкости ЭВГ (расчетная частота вращения для различных электролитов и
параметров устройства 1500-25000 об/мин), то ионы будут отчасти
сепарироваться/
Тяжелые ионы, воздействуя друг на друга своим электрическим полем,
сместятся к периферии емкости. Крайние прижмутся к ее внутренней
поверхности (на Рис.2 к аноду) и создадут пространственный концентрационный
электрический потенциал. При этом результирующая центробежная сила,
действующая на прижатые к аноду ионы (анионы) разрушит их гидратные
оболочки, как наиболее слабые. Легкие ионы менее отзывчивы к гравитации и
окружены более прочными оболочками, поэтому не могут отдать тяжелым ионам
свои молекулы гидратной воды. В силу этих обстоятельств они сосредоточатся
над тяжелыми ионами и в области оси вращения (у катода), образуя
электрический потенциал противоположного знака. Свободные электроны в аноде
под действием пространственного (объемного) заряда анионов переместятся на
катод (свойство цилиндра Фарадея).
При достижении необходимой минимальной (пороговой) частоты вращения емкости
с данным электролитом и принятыми конструктивными параметрами устройства
(см. формулу для ее расчета на Рис.2), т.е. критической величины
электрических потенциалов на электродах, равновесие зарядов нарушится.
Электроны выйдут из катода и ионизируют молекулы гидратных оболочек, а те
передадут заряды катионам . Иначе. говоря, как бы произойдет пробой
своеобразного электролитического конденсатора и начнется разряд ионов с
образованием на катоде свободного водорода, а на аноде кислорода и анодных
газов (осадка). Напряжение электрического тока будет зависеть от разности
скоростей химических реакций на катоде и аноде.
Таким образом, вследствие действия физического принципа обратимости энергии
гравитационное поле породит энергетически адекватное ему электрическое
поле, которое преодолеет энергию гидратации и осуществит электролиз. Этот
процесс протекает с поглощением раствором через теплообменник теплоты и
требует постоянного разбавления его водой до начальной концентрации. Его
пр
12345След.
скачать работу

Использование альтернативных источников энергии

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ