Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Катод Спиндта

го автоэмиссионного катода
Спиндта.

1. Молибденовый конус
2. Изолирующий слой из диоксида кремния
3. Молибденовая управляющая плёнка
4. Кремневая подложка.

   Перспективным применением  изделий вакуумной микроэлектроники
   представляется разработка плоских панельных дисплеев. Обеспечивающих
   высокое качество изображения и яркости ( в том числе и для цветного
   телевидения). Кремний –очень удобный материал для изготовления
   автоэмиссионных катодов. Поиск новых материалов, подходящих для создания
   автокатодов, ведется непрерывно.



             Технология изготовления катодов Спиндта заслуживает
             особого внимания. Она состоит из нескольких этапов.

1. Получение стандартной высокопроводящей подложки из кремния. Эта подложка
   покрывается затем оксидной плёнкой кремния требуемой толщины (1,5мкм) с
   помощью техники окисления.
2. Методом электронно-лучевого напыления на окисел наносится тонкая плёнка
   молибдена толщиной 0,4мкм.
3. Эта структура покрывается полиметилметакрилатом (ПММ) – высокополимерным
   соединением, которое представляет собой электронночувствительное
   сопротивление. Толщина пленки (ПММ) примерно 1мкм.
4. Поверхность ПММ экспонируется в вакууме сфокусированными электронными
   пучками, формируя на ней пятна нужного диаметра и необходимой
   конфигурации. Пятна обычно имели диаметр около 1мкм и располагались в
   узлах квадратной решётки с шагом 25,4мкм или 12,4 мкм.
5. Экспонированные участки растворяются в изопропиловом спирте, а затем
   происходит травление лежащего ниже этих участков слоя молибдена до
   диэлектрика.
6. Удаляются остатки ПММ, и слой диэлектрика травится плавиковой кислотой
   до кремневой подложки. В результате образуется структура, показанная на
   рис.3.1. Плёнка молибдена слегка нависает над отверстием в диэлектрике,
   так как кислота не действует на молибден.
7. Методом вакуумного напыления на молибден наносится плёнка алюминия. При
   этом образец непрерывно вращается вокруг вертикальной оси, и напыление
   происходит под большим углом к ней. Это делается, чтобы предотвратить
   попадание алюминия в сетке. Размер отверстия уменьшается до необходимой
   величины (рис. 3.2.).
8. Через частично закрытое отверстия производится напыление молибдена, при
   этом внутри отверстия вырастает конус необходимого размера и высоты.
   Вершина конуса формируется, когда отверстие полностью закрывается. Эта
   стадия процесса показана на рис. 3.3.
9. Вспомогательный слой алюминия растворяется, находящийся на нем
   молибденовая пленка удаляется (рис. 3.4.). После термической тренировки в
   вакууме катод готов к применению.



           Рис.3. Технология изготовления тонкоплёночного катода.



       Рис.3.1. Исходная структура для формирования конуса.



       Рис.3.2. Формирование изолирующего слоя.



       Рис.3.3. Формирование конуса напылением.



          Рис.3.4. Удаление изолирующего слоя.

         1-металическая плёнка; 2-диэлектрик; 3-кремневая подложка;
                   4-ось вращения; 5-направление напыления


 Используя такую технологию, были изготовлены катоды с 1,100 и 5000
эмиттерами. Решётка со 100 эмиттерами имела вид матрицы
10 на 10 с шагом 25,4мкм, так что полная область эмиссии представляла собой
квадрат со стороной 0,25мм. Решётка с 5000 эмиттерами заполняла круглую
область диаметром 1мм с расстоянием между конусами 12,7мкм. Таким образом,
плотность упаковки эмиттеров достигла [pic]. Фотография поверхности
тонкоплёночного катода под большим увеличением приведена на рис.4.

                  Рис.4 Поверхность тонкоплёночного катода.



        Рис.4.1. Решётка острий под
   Рис.4.2.Одиночное остриё.
                большим увеличением.

   Область рабочих напряжений для катодов составляла от100 до 300В. Они
работали при давлении [pic]мм.рт.ст., которое обеспечивалось непрерывной
откачкой. Ток эмиссии одного острия находился в пределах от 50 до 150 мкА.
Полный ток с 100-острийного катода достигал 5 мА, что соответствует средней
плотности тока с катода  8 А/[pic]. Для катода с 5000 острий в импульсном
режиме был получен ток до 100 мА (плотность тока достигла 12 А/[pic].).
Дальнейшее увеличение тока с катода было невозможно, поскольку анод не был
приспособлен для диссипации соответствующего количества энергии.
   Помимо технологии создания тонкоплёночных катодов, были приведены
результаты подробного исследования их характеристик; прежде всего
эмиссионных характеристик, стабильности работы, шумовых свойств.
   Важнейшими параметрами автоэмиссионных катодов являются коэффициент
усиления поля на поверхности острия и эффективная площадь эмиссии.
Коэффициент усиления поля ? связывает напряжённость электростатического
поля на поверхности острия с приложенным напряжением.           [pic]
(*)


Если пренебречь влиянием пространственного заряда эмитированных электронов,
то такая связь должна быть линейной, поэтому коэффициент ? зависит от
геометрии системы и от положения точки наблюдения на поверхности острия.
Для расчёта ? можно использовать приближённые аналитические формулы или
численные методы. В качестве примера на рис.5. приведена рассчитанная
численно зависимость коэффициента усиления ? от полярного угла [pic] для
геометрических размеров, соответствующих катоду Спиндта. Как следует из
рисунка, поле на поверхности острия практически не уменьшается вплоть до
угла [pic]и уменьшается примерно на 10% для угла [pic].
      [pic]                            I/[pic]
        2.5
      1.0


                        0. 0.8


                       5. 0.6


                       1. 0.4


        0.5
      0.2



     0.0                    30                 60               90
[pic]


         Рис.5. Распределение коэффициента усиления поля [pic] и плотности
тока эмиссии по поверхности острия.

   Кривые 1 и 2 соответствуют напряжению 150 – 300В на управляющем
электроде.
На этом рисунке приведены, рассчитанные с использованием закона Фаулера –
Норд гейма, где плотности тока эмиссии от угла [pic] для напряжений V=150 и
300В. Видно, что основной вклад в автоэмиссионный ток дают точки
поверхности, для которых [pic]. Угол [pic] можно использовать для
определения эффективной площади эмиссии:
                               [pic]      (3)
                      где r – радиус скругления острия.
   Полный ток е острия равен:
                                [pic]     (4)
      где [pic]- плотность тока, даваемая формулой Фаулера – Норд гейма
             для напряжённости поля на поверхности острия [pic].
   Формулы (3) и (4) совместно определяют эффективную площадь эмиссии и
предельный угол [pic]. Для корректного определения [pic] необходимо найти
[pic]- зависимость коэффициента усиления от угла, затем интегрированием
вычислить полный ток с острия и воспользоваться формулой (4).
Определённая таким способом эффективная площадь эмиссии зависит от
напряжения. Представление о порядке величины площади эмиссии можно получить
более просто, если считать, что угол автоэмиссии [pic] соответствует
уменьшению коэффициента усиления поля на 10%. Тогда следует определить из
графика [pic] такое значение [pic] и воспользоваться формулой (3). В этом
случае оценка для эффективной площади, очевидно, не зависит от напряжений.
Полученная оценка для [pic]обычно не более чем в 2 раза отличается от более
строгого расчёта.
Данные рассуждения справедливы в случае атомарно гладкой поверхности
острия. Если же на нем существуют микронеоднородности более мелких
масштабов, чем радиус скругления острия, то вблизи них электрическое поле
дополнительно усиливается. Из-за очень резкой зависимости плотности тока от
напряжённости поля, полный ток полностью определяется эмиссией с микро
неоднородностями. Эффективная площадь  эмиссии в соответствии с формулой
(3) имеет порядок [pic], где [pic]- характерный масштаб неоднородности.
                        Плотность упаковки эмиттеров.

   Сообщается о том, что достигнута плотность упаковки около [pic].
Дальнейшее увеличение этого числа связанно с одновременным уменьшением
диаметра отверстия в управляющем электроде и расстоянием между ними.
Минимальный диаметр отверстия, полученный ранее равен 0,5мкм и его
уменьшение затруднено аберрациями в электронно-оптической системе,
используемой для формирования много пучкового электронного потока в
установке для электронно-лучевой литографии. Приведём типичные значения
физических параметров для катода с 300-ми отверстиями и расстояниями между
ними 6.35мкм (плотность острий [pic]). Максимально достигнуто значение тока
12,5мА, при напряжении 130В и среднем токе с острия 40мкА. Это
соответствует плотности тока 130А/[pic]. Дальнейшее увеличение тока
требовало бы специального охлаждения анода. Используя катод с малым числом
острий, можно продемонстрировать, что автоэмиссионные катоды способны
обеспечить на порядок большую плотность тока. Так, для катода с 16-ю
остриями при переменном напряжении с частотой 60Гц, была получена плотность
тока в максимуме около 1000А/[pic]. Катод работал в таком режиме 100 часов,
после чего исследование его поверхности с помощью сканирующего электронного
микроскопа показало отсутствие каких-либо видимых изменений и повреждений.


                                Время жизни.

   Приведённые  данные свидетельствуют о большой долговечности
автоэмиссионных катодов. Непрерывное испытание в вакуумной камере катода
со100 остриями продолжалось в течении более чем 8 лет при уровне эмиссии от
20мкА до 50мкА с остриями, и было прервано из-за неисправности ионного
насоса. Дальнейшее развитие тонкопленочных катодов связанно, прежде всего,
с уменьшением их геометрических размеров и увеличением плотности упаковки,
что позволяет достигнуть сразу несколько целей. Уменьшение расстояние
остриё-управляющий электрод и уменьшение радиуса острия понижает рабочее
н
123
скачать работу

Катод Спиндта

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ