Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Неевклидова геометрия

. Между тем, в истории науки известны факты, когда более точно представленные эксперименты вызывали необходимость изменений, основанных на наглядности гипотез и аксиом, и замены их новыми гипотезами, которые лучше соответствуют объективному материальному миру. Ведь господствовало же у древних представление о том, что Земля плоская. В свое время казалась невероятной гелиоцентрическая гипотеза Коперника для всех людей, веками сжившихся с идеями геоцентрической гипотезы Птоломея. Известный английский математик так и писал: «Чем Коперник был для Птоломея, тем Лобачевский для Евклида». Между Коперником и Лобачевским любопытная параллель, Коперник и Лобачевский – оба славяне по происхождению. Каждый из них произвел революцию в научных идеях, воззрениях, и обе эти «революции» имеют одно и то же значение. Причина их грандиозного значения заключается в том, что они суть революции в нашем понимании космоса…». По поводу этого сравнения советский ученый, профессор В.Ф. Каган писал, что «Истины, открытые Лобачевским, были гораздо глубже скрыты, более неожиданны; их выявление требовало гения более высокого ранга» Гелиоцентрическая система Коперника только по иному представила расположение и движение небесных тел в пространстве. Система же Лобачевского дала новое представление о самом пространстве. Все вышесказанное – это физическая сторона геометрии. Но сейчас важнее математическая сторона геометрии, ее логическая структура. Из аксиомы Лобачевского вытекают следующие логические следствия: 1) Если прямые CN и CL не встречают прямой АВ, то любая прямая СМ, проходящая через т. C внутри вертикальных углов NCL и N’CL’ также не встретит прямой АВ (рис.3, рис.4). Отсюда первое следствие аксиомы Лобачевского: через т. С вне прямой АВ плоскости АВС, проходит бесчисленное множество прямых, не пересекающихся с прямой АВ. 2) Если соединить (рис.2) какую-либо точку прямой DB с т. С, получим прямую, допустим, СК, проходящую через т. С и встречающую АВ. Итак, все прямые, проходящие через т. С внутри прямого угла NCD, разбиваются на две категории, на два класса: встречающие прямую АВ (названные Лобачевским «сходящимися» с АВ) и не встречающие прямую АВ (их Лобачевский называет «расходящимися» с АВ). Любая прямая первой категории образует с перпендикуляром CD угол, меньший угла, образованного перпендикуляром CD с любой прямой второй категории. Вращаясь непрерывно около т. С в направлении против часовой стрелки, прямая СК на известном этапе, допустим в положении CL, перестанет пересекать АВ и из сходящейся перейдет в категорию расходящихся с АВ прямых. Эта предельная прямая CL, служащая переходной прямой, граничной, отделяющей сходящиеся от расходящихся прямых, и названной Лобачевским параллельной к прямой АВ из т. С. Итак, параллельная CL – это не просто расходящаяся прямая, а первая, граничная расходящаяся, т.е. такая, что любая прямая, проходящая через т. С внутри угла, образованного параллельной CL и перпендикуляром CD, является сходящейся прямой, а всякая прямая, проходящая внутри угла LCN будет расходящаяся с прямой АВ. Угол DCL, образованный параллельной CL с перпендикуляром CD, называют углом параллельности. В силу симметрии относительно перпендикуляра CD внутри прямого угла N’CD получим картину, аналогично той, которую мы имеем в угле NCD, т.е. построив угол DCF равный углу DCL, получим прямую CF, также параллельную прямой АВ слева от перпендикуляра CD. Итак, через т. С, лежащую вне прямой АВ, проходят в плоскости АВС две прямые, параллельные прямой АВ, в одну и другую сторону этой прямой. Все прямые, проходящие внутри вертикальных углов, образованных параллельными прямыми LL’ и GG’ (в том числе и евклидова «параллельная» NN’), расходятся с АВ; все остальные прямые, проходящие через т. С сходятся с прямой АВ. Следовательно: а) 2 прямые как АВ и NN’, имеющие общий перпендикуляр CD, расходятся; б) если вращать прямую NN’ около т. С, допустим, по часовой стрелке, а прямую АВ около т.D в том же направлении так, чтобы углы, образованные этими прямыми с пересекающей их прямой CD, оставались равными, то прямые АВ и NN’ остаются расходящимися, т.е. две прямые, образующие при пересечении с третьей прямой равные соответственные углы, расходятся. 3) Из предыдущего положения вытекает, что на параллели Лобачевского различается направление параллельности. Прямая CE параллельна прямой АВ в направлении или в сторону от A к B, прямая CF параллельна той же прямой AB в направлении или в сторону ВА (от В к А) (рис.5). Несмотря на коренные отличия, понятия параллельности у Лобачевского от одновременного понятия в геометрии Евклида, можно доказать, что «параллельность» в смысле Лобачевского тоже обладает свойствами взаимности или симметрии (если прямая а параллельна прямой в, то в параллельна а). И транзитивности (если а и в параллельны с, то а и в параллельны между собой). Приведем некоторые другие понятия и факты геометрии Лобачевского: 1. Функция Лобачевского. Как уже говорилось выше, через т. С в плоскости САВ проходят 2 направленные параллели к прямой АВ (СЕ и CF), симметрично расположенные относительно перпендикуляра CD (рис.5). Угол параллельности, образованный каждой из этих параллелей с CD, является острым, его величина не постоянна и зависит от расстояния CD(в геометрии Евклида угол параллельности всегда прямой). То, что угол параллельности острый, вытекает непосредственно из аксиомы Лобачевского. В изменении этого угла с изменением расстояния CD можно убедиться путем следующих рассуждений (рис.6). Пусть C’D>CD, CE || AB, в т. С угол параллельности – W. Пусть далее прямая C’E ‘|| AB в т. С’ угол параллельности - W’. В силу свойства транзитивности CE ||C’E’. Ясно, что W?W’. Действительно, если допустить, что W= W’, то следует также допустить, что C’E’ и CE – расходящиеся прямые, как было показано выше, а это неверно. Построим C’K, образующую с CD угол ?’ ?, ясно, что ?’< ? , т.к. параллельC’E’ ближе к перпендикуляру, чем расходящаяся C’K. Итак, ?' < ? ; отсюда следует, что угол параллельности убывает по мере удаления от прямой АВ; чем ближе т. С к прямой АВ, т.е. чем короче перпендикуляр CD, тем больше угол параллельности. Если обозначить расстояние т. С от прямой АВ, т.е. длину перпендикуляра CD через х, то можно сказать, что угол параллельности есть функция от х, названная «функцией Лобачевского» и обозначаемая П (х). Это монотонно убывающая функция. При изменении аргумента х от 0 до ? функция П (х) непрерывно изменяется соответственно от ? /2 до 0. Таким образом ,[pic] , [pic] При х > 0 , иными словами, если оставаться в пределах сравнительно небольших расстояний, то угол параллельности мало отличается от ? /2 то есть от этого значения, которое он имеет в евклидовой геометрии, это означает, что геометрия Лобачевского не противоречит, не исключает геометрии Евклида; последнего можно рассматривать как частный случай большой общей геометрии – геометрии Лобачевского. Реальный смысл предельного перехода (при х > 0) от геометрии Лобачевского к геометрии Евклида состоит в том, что физика изучает, в конечном счете, только ограниченную, сравнительно небольшую часть пространства. Вот почему в окружающей нас среде (даже в пределах нашей планеты) свойства физического пространства приблизительно таковы, какими мы их знаем из Евклидовой геометрии, но для всего пространства, для мира звезд, для вселенной в целом, они иные, неевклидовы. 2. Сумма углов треугольника меньше 2d. Это предположение эквивалентно аксиоме Лобачевского, то есть из него вытекает эта аксиома и наоборот. Для примера докажем первое. Пусть ( рис.7) в прямоугольном треугольнике CDK сумма углов S= ?+?+?<2d, то есть ?+? ? + ? . 5. Если три угла одного треугольника соответственно равны трем углам другого треугольника, то эти треугольники равны между собой. Это четвертый признак равенства треугольников в геометрии Лобачевского. Таким образом, в плоскости Лобачевского треугольник вполне определяется своими углами. Стороны и углы зависят друг от друга. Отсюда ясно, что в геометрии Лобачевского нет подобных фигур. Действительно, ведь из существования подобных фигур вытекает евклидова аксиома параллельности (доказательство Валлиса). 6. Площади. Уже известно, что, чем меньше размеры фигур, которые мы изучаем, тем ближе к геометрии Евклида, в которой угловой дефект треугольника равен 0. Доказывается следующая теорема: площадь треугольника прямопропорциональна его угловому дефекту. Чем меньше размеры фигуры, тем меньше ее дефект, тем меньше площадь. Однако угловой дефект по определениям не может превзойти 2d, следовательно, и площадь треугольника в геометрии Лобачевского не может стать больше некоторой, определенной, конечной величины. Таковы некоторые из основных идей и фактов геометрии Лобачевского. После работы «О началах геометрии», появились в свет и другие произведения Лобачевского по неевклидовой геометрии: «Воображаемая геометрия» (1835), «Применение воображаемой геометрии к некоторым интегралам» (1836), «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках Казанского университета» в 1835-1838г.г., «Геометрические исследования по теории параллельных» (опубликованы впервые в1840г. в Берлине на немецком языке). Однако идеи Лобачевского были настолько революционными и до того опередили свой век, что не могли быть понятыми даже крупными математиками того времени. Поэтому новая геометрия не была признана современниками, была встречена с полным равнодушием и даже с иронией. Ее многие считали сплошной фантазией, а ее автора чудаком или даже невеждой. Одинокий Лобачевский не отказался от своих идей. Он твердо был убежден в логической правильности неевклидовой геометрии. Чтобы м
12345След.
скачать работу

Неевклидова геометрия

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ