Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Оптические квантовые генераторы

 разрядные трубки увеличенного диаметра  (до  10+15  мм).  Однако  при  этом
 встречаются трудности в получении  равномерного  разряда  по  всей  площади
 трубки, требуются мощные катоды, обеспечивающие большие токи   эмиссии  (до
 сотен ампер).

   [pic]
В настоящее время с  трубками  диаметром   10  +  +15  мм  в  аргоновом  ОКГ
достигнута мощность генерации   500 Вт.
    При создании мощных аргоновых  ОКГ  возникают   существенные  трудности,
связанные с распылением электродов и стенок  разрядных  трубок.  Распыленные
частицы, оседая на брюстеровы окна (или  на  внутренние  зеркала),  образуют
поглощающий слой.  В  результате  абсорбции  излучения  в  поглощающем  слое
происходит  термическая деформация  оптических  элементов,  что  приводит  к
значительной расходимости луча  и  падению  выходной  мощности.  Поглощающий
слой на поверхности окон и разрушение отражающих  слоев   зеркал  резонатора
полем излучения большой мощности являются основными  препятствиями,  которые
ограничивают рост мощности    аргоновых ОКГ непрерывного действия.
    Существенное влияние на  выходную  мощность  аргоновых    ОКГ  оказывает
также аксиальное магнитное  поле.  Наложение   продольного  магнитного  поля
приводит   к   спиральному   движению     электронов    и    ионов    вокруг
магнитных_силовых  линий,  что  снижает  радиальную   диффузию   к   стенкам
капилляра, увеличивая  концентрацию их  на  оси  трубки.  Уменьшение  ионной
бомбардировки   облегчает тепловую нагрузку на  стенки  разрядной  трубки  и
увеличивает срок ее службы. Экспериментальные исследования  показывают,  что
с ростом напряженности магнитного поля выходная мощность ОКГ  увеличивается,
достигая максимума  при  некотором  оптимальном  значении  напряженности,  а
затем падает.
    Рис.88  иллюстрирует  зависимость   мощности   генерации   от   величины
напряженности  магнитного  поля  при  различных   давлениях   газа   ОКГ   с
капилляром диаметром 4 мм, длиной 28 см, при   силе тока 30 А. Видно, что  с
ростом давления ^/опт уменьшается. Величина оптимальной напряженности  также
зависит от силы тока и диаметра разрядного капилляра. С ростом силы  тока  и
давления hq „т уменьшается. Оптимальная, величина  напряженности  магнитного
поля лежит в диапазоне от нескольких десятков тысяч   до  (2*3)-  1СГ3  А/м.
Исследования  показывают,  что  падение   мощности   генерации   при   полях
напряженностью,   большей   оптимальной,   когда   образуется   значительная
концентрация заряженных частиц на  оси  разрядной  трубки,  связано  главным
образом с эффектом пленения резонансного излучения и  ростом  числа  тушащих
соударений ионов с электронами, приводящими к безызлучательной  дезактивации
верхних рабочих уровней.
    Как уже отмечалось, инверсия йаселенностей в дуговом  аргоновом  разряде
обеспечивается   для    систем    уровней,    соответствующих    электронным
конфигурациям Зр 4р и Зр4S  ионов  аргона.Потому  при  выполнении  пороговых
условий в аргоновом ОКГ мэхвт возникнуть  генерация  когерентного  излучения
на целом раде переходов этой системы уровней.
    В аргоновых ОКГ генерация наблидается на многих   длинах волн,  лежащих
в пределах от фиолетовой (450 нм) до зеленой  (530  мн)  области.  Наиболее
интенсивная генерация идет на линии 488 нм, отвечающей переходу ^pгDocln  —
^s^Pw • Незначительно ей уступает по интенсивности  генерация  на  переходе
^Р^ю— — Чв^^с длиной волны  514,5  нм.  В  линиях  488  и  514,5  нм  может
заключаться соответственно до 45 и У?% общей мощности генерации.  Для  этих
линий  обеспечиваются  наибольшие   величины   инверсии   населенностей   и
соответственно большие коэффициенты усиления. Измерение усиления для ОКГ  с
капилляром 0,5 см при давлении 10 Па и плотности тока 600 А/см для перехода
о   А, = = 488 нм дает величину I3-IO"3 см"1, для  перехода  с  A=5I4,5i»i-
примерно 3,6-Ю"3 см"1.
    Следующей по интенсивности после линий 488 и 514,5 нм является линия 496
либо 476 нм, на которую приходится около 6% полной  выходной  мощности.  При
небольших превышениях тока над пороговым значением генерация  происходит  на
переходе ^Р^то---••^-^м.  Линия  усиления  имеет  доплеровское  уширение,  и
полная ширина спектра генерации достигает 10 ГГц,  превышая  ширину  спектра
Не-Ne ОКГ в 4-5 раз. Последнее  объясняется,  во-первых,  тем,  что  рабочие
частицы в аргоновой плазме имеют значительно  большую  скорость,  чем  атомы
неона в смеси  Не-Me,  и,  во-вторых,  более  высоким  избыточным  усилением
(превышением усиления над потерями в резонаторе). Для обеспечения  генерации
на отдельных переходах из системы рабочих уровней  электронных  конфигураций
Зр 4р и 3p-4s необходимо использование селективных элементов в  ОКГ  (призм,
дифракционных решеток).
Оптический   квантовый  генератор  на  углекислом  газе

    Относится к группе газовых  лазеров,  в  которых  используются  переходы
между колебательно-вращательными состояниями  молекул.  В  настоящее  время
осуществлена  генерация  на  кодебательно-врашательных   переходах   многих
молекул: СО , ti^O ,НуО , СО^ и т.д. Лучшие результаты получены  с  ОКГ  на
COq . Они являются самыми мощными из всех газоразрядных ОКГ,  работающих  в
непрерывном режиме,    и  имеют  высокий  коэффициент  полезного  действия,
достигающий 20 т 30%.
    Рассмотрим механизм создания инверсии населенностей в ОКГ на  углекислом
газе.  Инверсия  наоеленностей  в  таких  ОКГ  осуществляется   посредством
газового разряда. Прежде чем рассматривать вопрос  о  механизме  генерации,
приведем некоторые данные о молекуле СО^  и  ее  уровнях.  Молекула  COn  -
линейная симметричная молекула. Она имеет три  нормальных  типа  колебаний:
валент-ное полносимметричное  (^  ),  деформационное  (  ^  )  и  валентное
антисимметричное (^д) (рис.89). Деформационные  колебания  являются  дважды
вырожденными, так как колебания с одной и той же частотой могут происходить
в  двух  ортогональных     плоскостях,  проходящих  через   ось   молекулы.
Колебательное состояние молекулы описывается тремя квантовыми числами и,  ,
Vn и ^з  •  каждое  из  которых  представляет  число  возбужденных  квантов
колебаний  г>!  '  ^2.  •  "^З  •   Соответствующие   уровни   обозначаются
комбинацией  квантовых  чисел  (^  ,и^  ,  v^  ).  Квантовое  число   t   ,
записываемое.  в   виде   индекса,   обусловлено   двукратным   вырождением
деформационного -
колебания. Оно принимает значения ^"1^,0^-2,..., О для четных и, и I  «  Do,
Uo-1,..., 1 Для нечетных и определяет значение момента  количества  движения
Р^  =  /г.^/(2Х),  связанного  с  колебаниями  в  направленного  вдоль   оси
молекулы. Уровни с Ь  =  0  являются  невырожденными,  с  Ь  >  0  -  дважды
вырожденными.  При  и,  >  I  вследствие   ангармоничности   колебаний   СО^
вырождение снимается. На рис.90  дана  схема  нижних  колебательных  уровней
молекул СОп .
    Для эффективного заселения верхнего  рабочего  уровня  молекул  СО  в  в
рабочую трубку ОКГ вводят азот..Так как Ng   — двухатомная молекула, то  она
имеет только одну колебательную степень свободы.  Ее  колебательная  энергия
определяется квантами энергии, обусловленными колебаниями атомов  вдоль  оси
молекулы.  Соответственно  колебательные  уровни  энергии   молекулы   азота
описываются одним колебательным квантовым числом v  .  На  рис.90  приведена
также  система   нижних   колебательных     уровней   молекул   No.   Весьма
примечательно то, что энергия первого  возбужденного  колебательного  уровня
молекулы Nn почти  равна  энергии  уровня  (00°1)  молекулы  СОр  .  Разница
энергии    состояний (00°1) молекулы СОр и ( о =1)  молекулы  Nn  составляет
всего 0,0023 эВ.
     Генерация в ОКГ на СО^  осуществляется  на  переходах  (DO0!)-—(П^О)  и
 (00°I) — (02°0). Наиболее интенсивная   генерация идет на переходе (00°1) —
 (ГС°0) с длиной волны около 10,6 мкм,  которая  подавляет  почти  полностью
 генерацию на длине    волны 9,6 мкм (00°1) -.(02°0).
     Возбуждение верхнего рабочего  уровня  (00°1)  обусловлено  несколькими
 процессами. Основной процесс возбуждения связан с  неупругими  соударениями
 молекул N^ с СО^ , что ведет к резонансной передаче  колебательной  энергии
 от молекул азота к молекулам углекислого газа:
          [pic]
    В  газовом  разряде  электронные  соударения  приводят   к  эффективному
образованию колебательно-возбужденных молекул Nn (v =  I)  (до  30%  общего
числа молекул Nn). Так  как  молекула  азота  состоит  из  двух  одинаковых
атомов, то ее дипольный момент  равен  нулю,  поэтому  дипольное  излучение
отсутствует     и   разрушение   возбужденных    колебательных    состояний
происходит только  в  результате  столкновений.  Вследствие  почти  полного
совпадения уровней энергии первого колебательного уровня {и = I) молекул No
и уровня (00 I) СОр  соударения возбужденных молекул No с молекулами СОп  ,
находящимися в основном состоянии, ведут к селективному заселению  верхнего
рабочего уровня (00 I) СО^ .
    Существенную  роль  в  заселении  верхнего  рабочего     уровня   играет
резонансная передача колебательной энергии от  молекул СО молекулам СОр . В
газовом разряде благодаря диссоциации молекул СОо  образуется  значительное
количество молекул СО , которые при соударениях  с  электронами  интенсивно
переводятся  в  колебательно-возбужденное  состояние.  Первый  возбужденный
колебательный уровень молекулы СО почти совпадает с верхним рабочим уровнем
(00  Г)  молекул  СОр.  Благодаря  этому   происходит  процесс  резонансной
передачи колебательной энергии от молекул СО (так же, как от молекул  Nn  )
молекулам СОр:
      [pic]
Этот процесс - один из основных в заселении верхнего рабочего уровня ОКГ  на
чистом СОр .
    Верхний  рабочий  уровень  (00°1)  дополнительно  заселяетс
Пред.67
скачать работу

Оптические квантовые генераторы

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ