Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Основы теории систем и системный анализ

вом возможных значений (в зависимости от единицы измерения). Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному. Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений. Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения. К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1[pic]называют достоверными, а с вероятностью 0 — невозможными. Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1. Если мы наблюдаем за сложным событием — например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости. Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1. Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины. Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные: Таблица 2.1 |Грани |1 |2 |3 |4 |5 |6 |Итого | |Наблюден|140 |80 |200 |400 |100 |80 | 1000 | |ия | | | | | | | | Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой. Рис. 2.1 [pic] Какую же информацию несет такая табличка или соответствующая ей гистограмма? Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по [pic] на любой из исходов. С другой стороны — очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: — а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани? Нетрудно сосчитать: 1(0.140+2(0.080+3(0.200+4(0.400+5(0.100+6(0.080= 3.48 То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое. Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как Mx = ( Xi ( P(Xi); {2 - 1} где P(Xi) — вероятность того, что X примет свое i-е очередное значение. Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной)— это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений. Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5. Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений? Для этой цели используется специальная величина — мера рассеяния — так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину [pic] {2 - 2} принято называть дисперсией случайной величины X. Вычисление дисперсии намного упрощается, если воспользоваться выражением [pic] {2 - 3} т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения. Выполним такое вычисление для случайной величины с распределением рис. 1. Таблица 2.2 |Грани(X) |1 | | | | | |Итого | | | |2 |3 |4 |5 |6 | | | X2 | 1 | | 9| | 25| | | | | |4 | |16 | |36 | | | Pi | |0.080 | | | 0.100| 0.080| 1.00 | | |0.140 | |0.200 |0.400 | | | | |Pi(X2(1000 | 140 | 320 | 1800| 6400 | 2500| 2880 |14040 | Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930. Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения — т. н. среднеквадратичное отклонение или отклонение от среднего значения: [pic] {2 - 4} составляющее в нашем случае [pic] = 1.389. Много это или мало? Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения — (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917. Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении. Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания: Vx = SX/MX . {2 - 5} В нашем примере эта величина составит 1.389/3.48=0.399. Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации. В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла — как проверить, что вес товара составляет точно 242 кг - не больше и не меньше? Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне. 2 Взаимосвязи случайных событий Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет P(X) = 1 - P(X). {2 - 6} Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) — это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, — совмещения событий. Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос — это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними? Попробуем разобраться в этом вопросе на основании здравого смысла. Оценим вначале вероятность одновременного наступления двух независимых событий. Элементарные рассуждения приведут нас к выводу: если события независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное их наступление имеет вероятность всего лишь 0.8 ( 0.2 = 0.16 или 16% . Итак — вероятность наступления двух независимых событий определяется произведением их вероятностей: P(XY) = P(X) [pic]P(Y). {2 - 7} Перейдем теперь к событиям зависимым. Будем называть вероятность события X при условии, что событие Y уже произошло условной вероятностью P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же простые рассуждения приводят к так называемой формуле Байеса P(X/Y)[pic]P(Y) = P(Y/X)[pic]P(X) {2 - 8} где слева и справа записано одно и то же — вероятности одновременного наступления двух "зависимых" или коррелированных событий. Дополним эту формулу общим выражением безусловной вероятности события X: P(X) = P(X/Y)[pic]P(Y) + P(X/Y)[pic]P(Y), {2 - 9} означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло (Y) — третьего не дано! Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противо-действия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события P(X/Y) [pic][pic]. {2 - 10} Прежде всего, еще раз отметим взаимную связь
12345След.
скачать работу

Основы теории систем и системный анализ

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ