Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Основы теории систем и системный анализ

таться усвоить методы их осуществления на конкретных примерах. Но уже сейчас отметим, что в каждом конкретном случае этапы системного занимают различный “удельный вес” в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы — указать, где оканчивается данный этап и начинается очередной. 2 Содержательная постановка задачи Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается финансированием работы - от него требуется (для пользы дела) произвести анализ системы, которой он управляет, сформулированы цели и оговорены возможные варианты действий. Так, — в упомянутом ранее примере системы управления учебным процессом одной из причин тихой кончины ее была та, что одна из подсистем руководство Вузом практически не обладала свободой действий по отношению к подсистеме обучаемых. Конечно же, на этом этапе должны быть установлены и зафиксированы понятия эффективности деятельности системы. При этом в соответствии с принципами системного подхода необходимо учесть максимальное число связей как между элементами системы, так и по отношению к внешней среде. Ясно, что исполнитель-разработчик не всегда может, да и не должен иметь профессиональные знания именно тех процессов, которые имеют место в системе или, по крайней мере, являются главными. С другой стороны совершенно обязательно наличие таких знаний у заказчика — руководителя или администратора системы. Заказчик должен знать что надо сделать, а исполнитель — специалист в области системного анализа — как это сделать. Обращаясь к будущей вашей профессии можно понять, что вам надо научиться и тому и другому. Если вы окажетесь в роли администратора, то к профессиональным знаниям по учету и аудиту весьма уместно иметь знания в области системного анализа — грамотная постановка задачи, с учетом технологии решения на современном уровне будет гарантией успеха. Если же вы окажетесь в другой категории — разработчиков, то вам не обойтись без “технологических" знаний в области учета и аудита. Работа по системному анализу в экономических системах вряд ли окажется эффективной без специальных знаний в области экономики. Разумеется, наш курс затронет только одну сторону — как использовать системный подход в управлении экономикой. 3 Построение модели изучаемой системы в общем случае Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости E = f(X,Y) {3 - 1} где: E — некоторый количественный показатель эффективности системы в плане достижения цели ее существования T, будем называть его — критерий эффективности. X — управляемые переменные системы — те, на которые мы можем воздействовать или управляющие воздействия; Y — неуправляемые, внешние по отношению к системе воздействия; их иногда называют состояниями природы. Заметим, прежде всего, что возможны ситуации, в которых нет никакой необходимости учитывать состояния природы. Так, например, решается стандартная задача размещения запасов нескольких видов продукции и при этом можем найти E вполне однозначно, если известны значения Xi и, кроме того, некоторая информация о свойствах анализируемой системы. В таком случае принято говорить о принятии управляющих решений или о стратегии управления в условиях определенности. Если же с воздействиями окружающей среды, с состояниями природы мы вынуждены считаться, то приходится управлять системой в условиях неопределенности или, еще хуже — при наличии противодействия. Рассмотрим первую, на непросвещенный взгляд — самую простую, ситуацию. 4 Моделирование в условиях определенности Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять продукцию клиентам равномерными партиями в количестве N =24000 единиц в год. Срыв поставок недопустим, так как штраф за это можно считать бесконечно большим. Запускать в производство приходится сразу всю партию, таковы условия технологии. Стоимость хранения единицы продукции Cx=10 копеек в месяц, а стоимость запуска одной партии в производство (независимо от ее объема) составляет Cp =400 гривен. Таким образом, запускать в год много партий явно невыгодно, но невыгодно и выпустить всего 2 партии в год — слишком велики затраты на хранение! Где же “золотая середина”, сколько партий в год лучше всего выпускать? Будем строить модель такой системы. Обозначим через n размер партии и найдем количество партий за год — p = N / n [pic] 24000 / n. Получается, что интервал времени между партиями составляет t = 12 / p (месяцев), а средний запас изделий на складе — n/2 штук. Сколько же нам будет стоить выпуск партии в n штук за один раз? Сосчитать нетрудно — 0.1 ( 12 ( n / 2 гривен на складские расходы в год и 400[pic]p гривен за запуск партий по n штук изделий в каждой. В общем виде годовые затраты составляют E = [pic] [pic]T[pic]n / 2 + [pic][pic]N / n {3 - 2} где T = 12 — полное время наблюдения в месяцах. Перед нами типичная вариационная задача: найти такое n0, при котором сумма E достигает минимума. Решение этой задачи найти совсем просто — надо взять производную по n и приравнять эту производную нулю. Это дает n0 = [pic] , {3 - 3} что для нашего примера составляет 4000 единиц в одной партии и соответствует интервалу выпуска партий величиной в 2 месяца. Затраты при этом минимальны и определяются как E0 = [pic] , {3 - 4} что для нашего примера составляет 4800 гривен в год. Сопоставим эту сумму с затратами при выпуске 2000 изделий в партии или выпуске партии один раз в месяц (в духе недобрых традиций социалистического планового хозяйства): E1 = 0.1(12(2000/2 + 400(24000/ 2000 = 6000 гривен в год. Комментарии, как говорится, — излишни! Конечно, так просто решать задачи выработки оптимальных стратегий удается далеко не всегда, даже если речь идет о детерминированных данных для описания жизни системы — ее модели. Существует целый класс задач системного анализа и соответствующих им моделей систем, где речь идет о необходимости минимизировать одну функции многих переменных следующего типа: E = a1[pic]X1 + a2[pic]X2 + ..... an[pic]Xn {3 - 5} где Xi — искомые переменные, ai — соответствующие им коэффициенты или “веса переменных” и при этом имеют место ограничения как на переменные, так и на их веса. Задачи такого класса достаточно хорошо исследованы в специальном разделе прикладной математики — линейном программировании. Еще в докомпьютерные времена были разработаны алгоритмы поиска экстремумов таких функций E = f(a,X), которые так и назвали — целевыми. Эти алгоритмы или приемы используются и сейчас — служат основой для разработки прикладных компьютерных программ системного анализа. Системный подход к решению практических задач управления экономикой, особенно для задач со многими десятками сотен или даже тысячами переменных привел к появлению специализированных, типовых направлений как в области теории анализа, так и в практике. Наиболее “старыми” и, следовательно, наиболее обкатанными являются методы решения специфичных задач, которые давно уже можно называть классическими. Специалистам в области делового администрирования надо знать эти задачи хотя бы на уровне постановки и, главное, в плане моделирования соответствующих систем. ( Задачи управления запасами Первые задачи управления запасами были рассмотрены еще в 1915 году — задолго не только до появления компьютеров, но и до употребления термина “кибернетика”. Был обоснован метод решения простейшей задачи — минимизация затрат на заказ и хранение запасов при заданном спросе на данную продукцию и фиксированном уровне цен. Решение — размер оптимальной партии обеспечивало наименьшие суммарные затраты за заданный период времени. Несколько позже были построены алгоритмы решения задачи управления запасами при более сложных условиях — изменении уровня цен (наличие “скидок за качество” и / или “скидок за количество”); необходимости учета линейных ограничений на складские мощности и т. п. ( Задачи распределения ресурсов В этих задачах объектом анализа являются системы, в которых приходится выполнять несколько операций с продукцией (при наличии нескольких способов выполнения этих операций) и, кроме того, не хватает ресурсов или оборудования для выполнения всех этих операций. Цель системного анализа — найти способ наиболее эффективного выполнения операций с учетом ограничений на ресурсы. Объединяет все такие задачи метод их решения — метод математического программирования, в частности, — линейного программирования. В самом общем виде задача линейного программирования формулируется так: требуется обеспечить минимум выражения (целевой функции) E(X) = C1[pic]X1 + C2[pic]X2 + ......+ Ci[pic]Xi + ... Cn[pic]Xn {3 - 6} при следующих условиях: все Xi положительны и, кроме того, на все Xi налагаются m ограничений (m < n) A11(X1 + A12(X2 + ......+ Aij(Xj + ... A1n(Xn = B1; ........................................................................ ............. Ai1(X1 + Ai2(X2 + ......+ Aij(Xj + ... Ain(Xn = Bi; {3 - 7} ........................................................................ ............. Am1(X1 + Am2(X2 + .....+ Amj(Xj+ ... Amn(Xn = Bm . Начала теоретического обоснования и разработки практических методов решения задач линейного программирования были положены Д.Данцигом (по другой версии — Л.В.Канторовичем). Для большинства конкретных приложений универсальным считается т. н. симплекс-метод поиска цели, для него и смежных методов разработаны специальные пакеты прикладных программ (ППП) для компьютеров. 5 Наличие нескольких целей — многокритериальность системы Весьма часто э
Пред.678910След.
скачать работу

Основы теории систем и системный анализ

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ