Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Принцип работы лазера и его применение

снована на способности вещества переходить  из  кристаллического  состояния
в аморфное. Достаточно  осветить  некоторую  точку   на  поверхности   диска
лучом   лазера   определенной    мощности,    как  вещество  в  этой   точке
перейдет  в   аморфное   состояние.    При    этом   изменяется   отражающая
способность   диска   в   этой    точке.    Запись   информации   происходит
значительно  быстрее,  но  при   этом   процессе  деформируется  поверхность
диска, что  ограничивает  число  циклов перезаписи.
         Технология   основанная   на    полимерных    красителях,    также
допускает  повторную  запись.  При   этой   технологии   поверхность   диска
покрывается    двумя     слоями     полимеров,     каждый     из     которых
чувствителен    к     свету     определенной     частоты.     Для     записи
используется частота, игнорируемая верхним слоем, но  вызывающая  реакцию  в
нижнем.  В  точке  падения  луча  нижний   слой    разбухает    и   образует
выпуклость,  влияющую  на  отражающие  свойства   поверхности  диска.    Для
стирания  используется   другая   частота,   на   которую  реагирует  только
верхний слой полимера,  при  реакции  выпуклость  сглаживается.  Этот  метод
как  и  предыдущий  имеет  ограниченное число циклов записи,  так  как   при
записи  происходит  деформация поверхности.
       В настоящие время уже разрабатывается технология  позволяющая менять
полярность  магнитного  поля   на   противоположную   всего   за   несколько
наносекунд.   Это   позволит   изменять   магнитное     поле   синхронно   с
поступлением данных на запись. Существует  также   технология    построенная
  на   модуляции излучения лазера. В этой технологии  дисковод  работает   в
 трех режимах - режим чтения с  низкой  интенсивностью,  режим   записи   со
средней интенсивностью и режим записи с  высокой  интенсивностью.  Модуляция
интенсивности  лазерного  луча  требует  более  сложной структуры     диска,
  и     дополнения     механизма      дисковода  инициализирующим  магнитом,
установленным   перед   магнитом    смещения   и   имеющим   противоположную
полярность. В самом  простом  случае  диск  имеет   два   рабочих   слоя   -
инициализирующий  и   записывающий. Инициализирующий    слой    сделан    из
такого   материала,   что инициализирующий   магнит   может   изменять   его
полярность   без дополнительного    воздействия    лазера.    В     процессе
записи инициализирующий слой  записывается   нулями,   а   при   воздействии
лазерного     луча     средней     интенсивности     записывающий       слой
намагничивается   инициализирующим,   при    воздействии    луча     высокой
интенсивности,  записывающий  слой   намагничивается   в   соответствии    с
полярностью  магнита  смещения.  Таким  образом    запись    данных    может
происходить за один проход, при переключении мощности лазера.
        Безусловно   МО   диски   перспективные   и   бурно   развивающиеся
устройства, которые могут решать назревающие проблемы с   большими  объемами
информации. Но их дальнейшее  развитие  зависит  не   только  от  технологии
записи на них, но и от прогресса в области  других носителей  информации.  И
если не будет изобретен более эффективный  способ  хранения  информации,  МО
диски возможно займут доминирующие роли.

         6. Применение лазеров в военной технике (лазерная локация)
                             а) наземная локация
      Как сообщает  печать,  за  рубежом  разрабатывается  ряд  стационарных
лазерных локаторов. Эти локаторы предназначены для слежения за  ракетами  на
начальном этапе полета, а также для слежения  за  самолетами  и  спутниками.
Большое значение придается лазерному локатору, включенному в систему  ПРО  и
ПКО. По проекту американской системы именно оптический локатор  обеспечивает
выдачу точных координат головной части  или  спутника  в  систему  лазерного
поражения цели. Локатор типа "ОПДАР" предназначен для слежения  за  ракетами
на  активном  участке   их   полета.   Тактические   требования   определяют
незначительную  дальность  действия  локатора,  поэтому  на  нем  установлен
газовый   лазер,   работающий   на    гелий-неоновой    смеси,    излучающий
электромагнитную энергию на  волне  0.6328мкм  при  входной  мощности  всего
0.01Вт. Лазер работает в непрерывном режиме, но его  излучение  модулируется
с частотой 100МГц.  Передающая  оптическая  система  собрана  из  оптических
элементов по схеме Кассагрена, что обеспечивает очень незначительную  ширину
расходимости луча. Локатор монтируется на основании,  относительно  которого
он может с помощью следящей системы устанавливаться в нужном  направлении  с
высокой точностью.  Эта  следящая  система  управляется  сигналами,  которые
поступают  через  кодирующее  устройство.  Разрядность  кода  составляет  21
единицу двоичной информации, что позволяет устанавливать  локатор  в  нужном
направлении с точностью около одной  угловой  секунды.  Приемная  оптическая
система   имеет   диаметр   входной   линзы   300мм.   В   ней    установлен
интерференционный фильтр, предназначенный для подавления  фоновых  помех,  а
также устройство, обеспечивающее фазовое детектирование  отраженной  ракетой
сигналов. В связи с тем, что локатор работает по своим объектам, то с  целью
увеличения  отражательной  способности   ракеты   на   нее   устанавливается
зеркальный уголковый отражатель, который представляет собой систему из  пяти
рефлекторов, обеспечивающих распределение упавшей на  них  световой  энергии
таким образом, что основная ее часть идет в сторону лазерного локатора.  Это
повышает эффективность отражающей способности ракеты в тысячи  раз.  Локатор
имеет три устройства слежения по углам: точный и грубый  датчики по углам  и
еще  инфракрасную  следящую  систему.  Технические  данные  первого  датчика
определяются  в  основном  оптическими  характеристиками   приемо-передающей
системы. А  так  как  диаметр  входной  оптической  системы  равен  300мм  и
фокусное расстояние равно 2000м, то  это  обеспечивает  угловую  разрешающую
способность  80  угловых  секунд.  Сканирующее   устройство   имеет   полосу
пропускания 100Гц. Второй датчик имеет оптическую систему с диаметром  150мм
и меньшее фокусное расстояние. Это  дает  разрешающую  способность  по  углу
всего 200 угловых секунд, т.е. обеспечивает меньшую точность, чем первый.  В
качестве приемников излучения оба  канала  оснащены  фотоумножителями,  т.е.
наиболее  чувствительными  элементами   из   имеющихся.   Перед   приемником
излучения  располагается  интерференционный  фильтр  с  полосой  пропускания
всего в 1.5 ангстрема. Это  резко  снижает  долю  приходящего  излучения  от
фона. Полоса пропускания согласована с длиной волны  излучения  лазера,  чем
обеспечивается прохождение на приемник только  своего  лазерного  излучения.
Локатор позволяет работать в пределах от 30  до  30000м.  Предельная  высота
полета ракеты 18000м. Сообщается, что этот локатор обычно  располагается  от
ракеты на расстоянии около 1000м  и на линии,
составляющей с плоскостью полета ракеты 45  градусов.  Измерение  параметров
движения ракеты с такой высокой точностью на активном  участке  полета  дает
возможность  точно  рассчитать  точку  ее  падения.  Локатор  для  слежения.
Рассмотрим локатор созданный по заказу НАСА и предназначенный  для  слежения
за спутниками. Он предназначался для слежения за собственными  спутниками  и
работал совместно с радиолокатором, который выдавал  координаты  спутника  с
низкой  точностью.  Эти  координаты  использовались   для   предварительного
наведения  лазерного  локатора,  который  выдавал   координаты   с   высокой
точностью. Целью эксперимента было определение того,  насколько  отклоняется
истинная траектория спутника от  расчетной,  -  чтобы  узнать  распределение
поля тяготения Земли по всей ее сфере. Для  этого  на  полярную  орбиту  был
запущен  спутник  "Эксплорер-22".  Его  орбита  была  рассчитана  с  высокой
точностью, но в  качестве  исходных  данных  вложили  информацию,  что  поле
тяготения определяется формой Земли, т.е.  использовали  упрощенную  модель.
Если же теперь в процессе полета   спутника  наблюдалось  уменьшение  высоты
его относительно расчетной  траектории, то очевидно,  что  на  этом  участке
имеются аномалии в поле  тяготения.  По  спутнику  "Эксплорер-22"  была,  по
сообщению НАСА, проведена  серия экспериментов  и  часть  этих  данных  была
опубликована. В одном из сообщений говорится,  что  на  расстоянии  960  км.
ошибка  в  дальности  составляла  3м.  Минимальный   угол,   считываемый   с
кодируемого устройства, был равен всего пяти  угловым  секундам.  Интересно,
что в это время появилось сообщение, что американцев опередили в  их  работе
французские инженеры и ученые. Сотрудники лаборатории Сан-Мишель де  Прованс
провели серию экспериментов по наблюдению за  тем  же  спутником,  используя
лазерный локатор своего производства.

               б) голографические индикаторы на лобовом стекле

Для  использования  в  прицельно-навигационной  системе   ночного   видения,
предназначенной для  истребителя  F-16  и  штурмовика  A-10  был  разработан
голографический индикатор на лобовом стекле. В связи  с  тем,  что  габариты
кабины самолетов невелики, то с  тем,  что-бы  получить  большое  мгновенное
поле зрения индикатора разработчиками было решено  разместить  коллимирующий
элемент под приборной доской. Оптическая система включает
три   раздельных   элемента,   каждый   из   которых   обладает   свойствами
дифракционных оптических систем: центральный изогнутый элемент выполняет
функции коллиматора, два других  элемента  служат  для  изменения  положения
лучей.  Разработан  метод   отображения   на   одном   экране   объединенной
информации: в форме растра и в штриховой форме,  что  достигается  благодаря
использованию обратного хода  луча  при  формировании  растра  с  интервалом
вре
12345
скачать работу

Принцип работы лазера и его применение

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ