Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Проблема солнечных нейтрино



 Другие рефераты
Применение магнитов Применение спектрального анализа Программа развития энергетического комплекса Проблемы развития атомной энергетики

САРОВСКИЙ ГОСУДАРСТВЕННЫЙ
                         ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ



                      КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ



                         ПРОБЛЕМА СОЛНЕЧНЫХ НЕЙТРИНО



                                   РЕФЕРАТ



                                       Студент: Дорохин А. В.
                                       Группа: МФ-49
                                       Проверил: Абрамович С. Н.



                                    Саров
                                    2002



                                 Содержание



Введение
............................................................................
............................................3

Генерация           нейтрино           в            недрах            Солнца
.......................................................................4

Проблема солнечных нейтрино ……………………………………………………...5

Эксперименты по обнаружению нейтрино…………………………….…………..11

Подземные                                                          детекторы
нейтрино....................................................................
............13

Существует               ли                проблема                солнечных
нейтрино........................................................17

Список                                                        использованной
литературы..................................................................
........    19



                                  ВВЕДЕНИЕ

       До  начала  30-х  годов  прошлого  столетия  никто  не  подозревал  о
существовании нейтрино. Они родились на кончике  пера  швейцарского  физика-
теоретика В. Паули в 1931 году в трудной  и  неясной  ситуации,  царившей  в
физике в то время. А ситуация была такая:  эксперименты  показали,  что  при
испускании электронов атомными ядрами либо  не  соблюдается  известный  всем
закон сохранения энергии, либо куда-то уносится энергия. Чтобы пояснить  всю
остроту  положения,  достаточно  сказать,  что  даже  сам  Н.  Бор  допускал
возможность нарушения закона сохранения энергии в  микромире.  Однако  Паули
нашел  объяснение  этому  парадоксу,  допустив  существование   нейтрино   –
частицы, являющейся, как выяснилось  позже,  главным  действующим  лицом  во
многих ядерных спектаклях, происходящих как  на  Земле,  так  и  в  космосе.
Благодаря нейтрино  недостаток  энергии,  обнаруженный  в  опытах  по  бета-
распаду, легко объяснялся: энергию уносили нейтрино. Тем самым  краеугольный
камень физики – закон сохранения энергии  –  был  спасен.  "Крестным  отцом"
нейтрино стал известный итальянский физик Э.  Ферми:  именно  он  дал  новой
частице  имя,  означающее   по-итальянски   "малая   нейтральная   частица",
"маленький нейтрон". Он же предсказал ряд ее свойств.
       Около  четверти  века  нейтрино  существовали   только   в   формулах
теоретической физики. Впервые их  зарегистрировали  американские  ученые  Ф.
Райнес и К.  Коуэн  в  экспериментах  1953  –  1956  гг.,  поместив  сложную
экспериментальную установку под  "град"  нейтрино,  источником  которых  был
мощный ядерный реактор. Уже первые эксперименты  подтвердили  свойства  этих
частиц, предсказанные  теорией.  Нейтрино  перестали  быть  мифом  и  теперь
являются полноправными  элементарными  частицами.  Бурное  развитие  техники
физического  эксперимента  за  последние  несколько  десятков  лет   сделало
возможными эксперименты по регистрации нейтрино,  рожденных  в  естественных
условиях, возникла новая область  науки  –  нейтринная  астрофизика.  Первым
объектом изучения стало наше Солнце.
      Нейтрино обозначается  буквой  ?,  является  электрически  нейтральной
частицей со спином 1/2, то есть фермионом. Принадлежит  к  классу  лептонов,
то есть, к легким  частицам.  Возможно,  нейтрино  имеют  нулевую  массу.  К
настоящему  времени  известно  шесть  лептонов,   три   из   которых   имеют
отрицательный заряд:  электрон,  мюон  и  ?-лептон,  и  три  соответствующих
аромата (сорта) нейтрино: электронное ?e, мюонное ?? и  тау-нейтрино  ??,  а
также шесть  антилептонов.  Выдающийся  физик,  академик  Б.  М.  Понтекорво
теоретически предсказал существование двух сортов нейтрино  –  “электронных”
и ”мюонных”. Очень скоро это предсказание  блестяще  оправдалось  на  опыте.
Вскоре было открыто также тау-нейтрино. Понтекорво  был  также  первым,  кто
указал на важность нейтрино для  изучения  звездных  и,  в  первую  очередь,
солнечных недр.
      Важнейшим отличительным свойством  нейтрино  является  их  огромнейшая
проникающая способность. Сечение взаимодействия нейтрино с веществом  растет
с ростом энергии нейтрино. Общее количество фоновых нейтрино  неизвестно,  и
оно может быть так же велико, как и количество фотонов. Нейтрино  образуются
при превращениях атомных ядер: в Земле в  процессах  распадов,  в  атмосфере
при бомбардировке космическими лучами, в Солнце и в звездах.
      Регистрируют нейтрино с  помощью  нейтринных  обсерваторий,  приборов,
расположенных глубоко под землей, в шахтах. Земля не является преградой  для
нейтрино, но задерживает  всевозможные  помехи,  которые  существуют  на  ее
поверхности. То  есть,  чем  глубже  находится  нейтринный  "телескоп",  тем
меньше посторонние помехи. Хотя радиоактивный фон и фон реликтовых  нейтрино
существует и глубоко под земной поверхностью.
                     ГЕНЕРАЦИЯ НЕЙТРИНО В НЕДРАХ СОЛНЦА
      По существующему представлению, в  звездах,  подобных  Солнцу,  синтез
ядер гелия из протонов должен происходить с помощью протон-протонного  (р-р)
или углеродно-азотного (С-N) циклов.
      В первой реакции p-p цикла при столкновении двух  протонов  образуются
ядро дейтерия и позитрон. Вероятность этой  реакции  очень  мала,  поскольку
для совершения процесса требуется выполнение двух крайне редких условий. Во-
первых, в момент столкновения протонов энергия одного  из  них  должна  быть
намного больше средней тепловой энергии, чтобы преодолеть  кулоновские  силы
отталкивания. Таких частиц  очень  мало.  Во-вторых,  необходимо,  чтобы  за
короткое время ((10-21с) один из протонов превратился в нейтрон, позитрон  и
нейтрино. Нейтрон соединяется с протоном с образованием  дейтрона,  нейтрино
покидает звезду, а позитрон аннигилирует с электроном с образованием  гамма-
квантов, которые поглощаются в звездном веществе. Особое внимание  к  первой
реакции   протон-протонного   цикла   обусловлено    тем,    что    скорость
энерговыделения в недрах Солнца задается именно ею, поэтому  она  определяет
и темп жизни Солнца, и особенности процессов, происходящих  в  глубоких  его
недрах. Сечение этой реакции столь мало, что в  ближайшем  будущем  вряд  ли
удастся в  лабораторных  условиях  его  измерить.  Это  сечение  вычисляется
теоретически.
       Дейтрон,  возникший  в  первой  реакции,  быстро  (секунды  или  доли
секунды,  в  зависимости  от  температуры)  превращается   в   изотоп   3Не,
соединяясь с протоном. Дальнейшее  развитие  цикла  протекает  по  различным
каналам, в  зависимости  от  температуры  и  химического  состава  звездного
вещества. Установлено, что при Т1 < 15(106 К, при 15(106  < T2 <  25(106   К
и при T3 > 25(106  К  преобладает  соответственно  один  из  трех  различных
вариантов реакций.
      Какой бы из  циклов  ни  осуществлялся,  конечный  итог  один:  четыре
протона превращаются в ядро  гелия-4.  При  этом  неизбежно  образуются  два
нейтрино и  гамма-кванты,  а  также  два  позитрона,  которые  впоследствии,
соединяясь с электронами, тоже дают гамма-излучение. При образовании  одного
ядра гелия-4  из  четырех  протонов  выделяется  энергия  26,7  МэВ,  равная
разности энергии покоя четырех  протонов  и  энергии  покоя  ядра  4Не.  Эта
энергия уносится электромагнитным излучением и нейтрино.
      В рассмотренных выше ядерных реакциях возникают гамма-кванты,  которые
распространяются в солнечном веществе по всем направлениям.  На  своем  пути
они взаимодействуют с атомами среды, ионами и электронами. В  среднем  такое
взаимодействие имеет место на пути в 1 см, в  то  время  как  радиус  Солнца
составляет 7(1010  см.  При  каждом  столкновении  фотоны  гибнут,  порождая
новые. В результате энергия фотонов постепенно уменьшается.  Проходят  сотни
тысяч лет, прежде чем "дальним  родственникам"  рожденных  в  недрах  Солнца
гамма-квантов удается выбраться  наружу.  Но,  к  сожалению,  они  мало  чем
похожи  на  своих  "предков":  в  ядерных  реакциях   рождаются   гамма-   и
рентгеновские  кванты,  а   выходят   из   Солнца   фотоны   оптического   и
ультрафиолетового диапазона. Это излучение никак не отражает свойств  среды,
в которой первоначально возникли кванты.
      Иное дело – нейтрино. Для того чтобы покинуть Солнце, им  нужно  всего
2 с. Важно и то, что, пройдя  сквозь  огромную  толщу  солнечного  вещества,
нейтрино сохраняют всю ту информацию,  какую  они  получили  в  термоядерных
реакциях. Даже ночью солнечные нейтрино приходят к нам, проходя через  толщу
Земли, совершенно не замечая ее существования.
      Ежесекундно в недрах Солнца сгорает 3,6(1038 протонов.  Поскольку  при
превращении четырех протонов  в  ядро  гелия-4  рождаются  два  нейтрино,  в
недрах Солнца должны  ежесекундно  генерироваться  1,8(1038  нейтрино.  Если
теперь эту величину разделить на 4?R2, где R = 150(106 км  –  расстояние  от
Земли до Солнца, то получим величину полного  потока  нейтрино  на  Земле  –
6,6(1010 нейтрино на  1  см2  в  1  с.  Важно  отметить,  чт
12345След.
скачать работу


 Другие рефераты
Конспект традиционного урока
Механизмы саморегуляции численности популяции
Төле би Әлібекұлы
Өзі көркем, өзі дана Гүлжаһан


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ