Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Проявление симметрии в различных формах материи

углового
распределения квантов, испускаемых поляризованными ядрами. Зеркально-
симметричные состояния отличаются друг от друга противоположными
направлениями скоростей (импульсов) частиц и электрических полей и
имеют одинаковые направления магнитных полей и спинов частиц.
      Б) Под внутренней симметрией понимают симметрию между частицами
(в квантовой теории поля – между полями) с различными внутренними
квантовыми числами. Среди различных внутренних симметрий можно выделить
глобальные симметрии и локальные симметрии.
      Примером глобальной симметрии является инвариантность лагранжиана
относительно следующих калибровочных преобразований входящих в него
полей:

                                                (1)
      Где (-произвольное число, а числа Qi фиксированы для каждого поля
(i. Эта инвариантность приводит к аддитивному закону сохранения заряда
(Qi = const.Наряду с электрическими в качестве зарядов могут выступать
и др. заряды: бариооный, лептонный, странность и т.д.
      Симметрия (1) называется глобальной симметрией, если параметр
преообразования ( не зависит от пространственно – временных координат
точки, в которой рассматривается поле.
      Если параметры преобразований для глобальных симметрий можно
расссматривать как произвольные функции пространственно-временных
координат, то говорят, что соответствующие симметрии выполняются
глобально.
      2.1.2.Одно- и двумерная симметрии
      Изучение симметрии кристаллических ребер и рядов ионов,атомов и
молекул, слагающих кристалл, привело к необходимости вывода всех
одномерных групп симметрии. Все операции одномерной симметрии оставляют
инвариантной одну особенную прямую. Изучение же симметрии граней и
молекулярных, атомных, ионных слоев кристаллов привело к необходимости
вывода всех двумерных групп симметрии. В последних операции симметрии
оставляют инвариантной одну особенную плоскость.
      Симметрия одномерная характерна для фигур с одним особенным
направлением – бордюров, лент, стержней, названия которых
недвусмысленно говорят об их происхождении. Однако названия эти
употребляются здесь не в обычном житейском смысле, а как родовые
обозначения для определенных совокупностей явлений.
      Бордюры – это фигуры без особенных точек, но сединственной осью
переносов и особенной полярной плоскостью. К ним относятся обычные
бордюры, применяемые для украшения проходов в метро, стен, колонн,
пилястр, ребра кристаллов, побеги растений, некоторые биологические
мембраны и т.д. Их симметрия исчерпывается всего семью группами,
составленными из осей переносов, обычных и «скользящих» плоскостей,
простых осей второго порядка.
      Ленты – это фигуры без особенных точек, но с единственной осью
переносов и проходящей через нее полярной или неполярной плоскостью.
Бордюры, таким образом, - ленты с особенной полярной плоскостью. К ним
относятся всевозможные борьеры, садовые решетки, заборы, биологические
мембраны и т.д. Доказано, что в лентах может быть только 6 элементов
симметрии: простая двойная ось, центр и плоскость симметрии, ось
переносов, двойная винтовая ост и плоскость скользящего отражения.Таким
образом для лент характерно отсутствие осей симметрии выше второго
порядка. Объяснение этого простое: оси порядка выше двух вызывали бы
существование нескольких транслякционных осей либо нескольких особенных
плоскостей, что противоречит первоначальным условиям.
      Стержни – это фигуры без особых точек и плоскостей, но с
единственным особым направлением, осью стержня, с которой, кроме оси
переносов, могут совпадать винтовые, зеркально-поворотные, простые
поворотные оси любого порядка. Таким образом, бордюры и ленты – стержни
особого рода. Примеры стержней – цепи, плетеные канаты, цепные
полимерные молекулы, лучи простого и поляризованного света, силовые
линии и т.д. На оси стержня можно располагать фигуры с самыми
различными, но не выходящими за пределы особого направления элементами
симметрии; из всех фигур с особой точкой для этой цели пригодны ,таким
образом, все конечные фигуры, кроме правильных многогранников,
содержащих косые оси. Размножение фигур по оси стержня производится с
помощью элементов симметрии бесконечных
                 (транслякционные и винтовые оси, плоскость скользящего
отражения), а также промежуточных элементов конечных фигур (центра
симметрии, поперечной оси второго порядка, зеркально-поворотной оси,
поперечной плоскости симметрии). Существует бесконечное множество видов
симметрии стержней, сводимых к 17 гтипам, кристаллографических групп
симметрии – 75.
      Симметрия двумерная присуща фигурам с двумя особенными
направлениями: сетчатым орнаментам и слоям, названия которых по
происхождению хотя и связаны с определенного рода бытовыми вещами, тем
не менее также служат лишь родовыми понятиями для обозначения двух
гораздо более широких явлений.
      Сетчатый орнамент – это фигура без особенной точки, с особенной
полярной плоскостью и двумя осями переносов. Примерами его являются
плоские орнаменты кристаллических граней, образованные атомами, ионами
и молекулами, клеточек биологических срезов и т.д. Бесконечный сетчатый
орнамент применяется человеком при производстве паркетных полов,
бумажных обоев, ковров и т .д.
      Фигуры односторонней разетки симметрии n или n?m (n - ось
симметрии порядка n,  m - плоскость, точка – знак прохождения n штук
плоскостей m   вдоль оси n) при их размножении в двух взаимно
перпендикулярных направлениях посредством непрерывных переносов а’ и а’
приводят к односторонним плоским континуумам двоякого рода: а’: а’:
n?m; а’: а’: n (n = 1:?)(здесь двоеточие-знак перпендикулярности).
Таким образом, возможно бесконечное множество отличных от евклидовых
односторонних плоскостей. Замечательно, что только при n = ? мы
получаем вполне изотропную: 1)  Обыкновенную   одностороннюю плоскость
симметрии а’: а’: ??m,которой отвечает, например, гладкая поверхность
воды, отражающая световые  лучи; 2)  правую и левую односторонние
плоскости симметрии а’: а’: ?, которой отвечает поверхность оптически
активного раствора, вращающего плоскость линейно поляризованного света
вправо или влево. Для биологических систем наиболее характерны
плоскости именно двух последних родов (изомерийные).
      Всем остальным видам симметрии ( n ? ?) отвечают анизотропные
плоскости; формуле а’: а’: 1отвечают правые и левые  асимметричные в
смысле симметрии размножаемых точек плоскости. Их моделями могут
служить   бесконечные  односторонние поверхности с равномерно и
беспорядочно распределенными на них асимметричными молекулами или
однородные сообщества высших растений, рассмотренные с высоты птичьего
полета.
      От односторонних плоских континуумов легко перейти к
односторонним семиконтинуума - бесконечным  плоским фигурам, прерывным
в одних и непрерывным в других направлениях. Примеры их - система
начерченных на бумаге параллельных полос, плоский ряд карандашей и т.
д. Их симметрия исчерпывается всего 7 видами. Причем если отбросить в
формулах симметрии плоских односторонних семиконтинуумов символ
непрерывной оси переносов, то получается 7 формул симметрии уже
известных нам бордюров. Это значит, что плоские односторонние
семиконтинуумы - это обыкновенные бордюры, до бесконечности вытянутые в
ширину.
      Слои – это фигуры без особенных точек, с особенной, не
обязательно полярной плоскостью и двумя осями переносов. Таким образом,
сетчатые орнаменты - лишь особого рода слои. Примерами слоев являются
складчатые слои полипептидных цепей, тончайшие пленки, прозрачные
двусторонние вывески и т. д.
      Вывод видов симметрии двусторонних плоских континуумов
осуществляется размножением фигур двусторонней розетки посредством двух
взаимно перпендикулярных непрерывных переносов. Так как число групп
симметрии двусторонних розеток бесконечно, то бесконечно и число групп
симметрии двусторонних плоских  континуумов.
      Двусторонний плоский семиконтинуум можно получить посредством
двух взаимно перпендикулярных переносов прямой линии, обладающей той
или иной симметрией ленты. В качестве примера плоского двустороннего
семиконтинуума можно взять систему тонких натянутых на плоскости
равноотстоящих друг от друга проволок.
       2.1.3.Континуумы, семиконтинуумы, дисконтинуумы
      Теперь возвратимся к фигурам с трехмерной симметрией, но уже как
к симметрическим пространствам – трехмерным дисконтинуумам,
семиконтинуумам и континуумам.
      Уже из философских положений: 1) пространство и время – формы
существования материи,2)движение – сущность пространства и
времени,3)существуют качественно различные, взаимно превращающиеся виды
материи и формы ее движения – вытекают выводы о существовании
качественно различных взаимно превращающихся конкретных форм
пространства и времени.
      Данные о континуумах, семиконтинуумах и дисконтинуумах также
подтверждают эти утверждения. Они с новой и очень своеобразной стороны
выявляют связь симметрии с пространством и временем.
      Очевидно кристаллы в отношении их атомов,ионов и молекул можно
рассматривать как дискретные трехмерные пространства – дисконтинуумы.
      Помимо дискретных – анизотропных и неоднородных – пространств  в
теории различают еще и дискретные в одних и непрерывные в других
направлениях пространства – семиконтинуумы I и II рода. Семиконтинуумы,
будучи явлениями, переходными между континуумами и дисконтинуумами и
одновременно их единством, с новых сторон выявляют диалектику
пространства.
      Пространственные (трехмерные) семиконтинуумы I рода могут быть
получены трансляцией плоских континуумов вдоль перпендикуляра к ним.
Число групп симметрии пространственных семиконтинуумов I рода
бесконечно.Можно привести несколько примеров таких пространств в
п
123
скачать работу

Проявление симметрии в различных формах материи

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ