Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Современная физическая картина мира

дана в конце  60-х  гг.  С  момента
построения Максвеллом теории электромагнитного  поля  создание  этой  теории
явилось самым крупным шагом на пути к единству физики.


3.4 Сильное взаимодействие

  Последнее в ряду фундаментальных взаимодействий — сильное взаимодействие,
которое является  источником  огромной  энергии,  более  характерный  пример
энергии, высвобождаемой сильным взаимодействием, — Солнце. В  недрах  Солнца
и звезд  непрерывно:  протекают  термоядерные  реакции,  вызываемые  сильным
взаимодействием. Но и человек научился высвобождать сильное  взаимодействие:
создана водородная  бомба,  сконструированы  и  совершенствуются  технологии
управляемой термоядерной реакции. К представлению о  существовании  сильного
взаимодействия физика шла в ходе изучения структуры атомного ядра.  Какая-то
сила должна удерживать положительно заряженные протоны в ядре,  не  позволяя
им разлетаться под действием  электростатического  отталкивания.  Гравитация
слишком слаба и не  может  это  обеспечить;  очевидно,  необходимо  какое-то
взаимодействие, причем, более сильное,  чем  электромагнитное.  Впоследствии
оно  было  обнаружено.  Выяснилось,  что  хотя  по  своей  величине  сильное
взаимодействие  существенно  превосходит   все   остальные   фундаментальные
взаимодействия, но за пределами ядра  оно  не  ощущается.  Как  и  в  случае
слабого взаимодействия, радиус действия новой  силы  оказался  очень  малым:
сильное взаимодействие проявляется  на  расстоянии,  определяемом  размерами
ядра,  т.е.  примерно  1013  см.  Кроме  того,   выяснилось,   что   сильное
взаимодействие испытывают не все частицы.  Так,  его  испытывают  протоны  и
нейтроны, но электроны, нейтрино и  фотоны  не  подвластны  ему.  В  сильном
взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно  за
образование ядер и многие взаимодействия элементарных частиц.
  Таким  образом,  в  фундаментальных  физических   взаимодействиях   чётко
прослеживается различие сил дальнодействующих и близкодействующих.  С  одной
стороны,  взаимодействия  неограниченного  радиуса   действия   (гравитация,
электромагнетизм), а с другой —  малого  радиуса  (сильное  и  слабое).  Мир
физических процессов развертывается  в  границах  этих  двух  полярностей  и
является воплощением  единства  предельно  малого  и  предельно  большого  —
близкодействия в микромире и дальнодействия во всей Вселенной.



4.1 Элементарные частицы

  Элементарные частицы играю огромную роль  в  общем  понимании  физической
картины мира. Представления об элементарных частицах задаёт материю.
  Исторически   первыми   экспериментально   обнаруженными    элементарными
частицами  были  электрон,  протон,  а  затем  нейтрон.  При  таком  подходе
вещество  строилось  из  протонов,  нейтронов   и   электронов,   а   фотоны
осуществляли взаимодействие между ними. Однако  скоро  выяснилось,  что  мир
устроен гораздо сложнее. Было установлено, что каждой частице  соответствует
своя античастица, отличающаяся от неё  лишь  знаком  заряда.  Для  частиц  с
нулевым зарядом античастица совпадает с частицей(например  фотон).  По  мере
развития экспериментальной ядерной физики к  этим  частицам  добавилось  ещё
свыше 300 частиц!
  Характеристиками субатомных частиц являются масса,  электрический  заряд,
спин, время жизни, магнитный момент,  пространственная  чётность,  лептонный
заряд, барионный заряд и т.д..
  Лептоны
    Хотя лептоны могут иметь электрический заряд, а могут и не иметь,  спин
у всех у них равен Ѕ. Среди лептонов наиболее известен электрон.
  Другой  хорошо  известный  лептон-нейтрино.  Нейтрино  являются  наиболее
распространёнными  частицами  во  Вселенной.  Вселенную  можно   представить
безбрежным нейтринным морем, в котором изредка встречаются  острова  в  виде
атомов. Но, несмотря на такую распространённость нейтрино, изучать их  очень
сложно. Как мы уже отмечали, нейтрино почти не уловимы.  Не  участвуя  ни  в
сильном,  ни  в  электромагнитном  взаимодействиях,  они   проникают   через
вещества, как  будто  его  вообще  нет.  Нейтрино  –  это  некие  “призраки”
физического мира.
  Адроны
    Разновидностей адронов около сотни. Тот факт,  что  адронов  существует
сотни, наводит на мысль, что адроны-не элементарные частицы, а построены  из
более  мелких  частиц.  Все  адроны  встречаются  в   двух   разновидностях-
электрически  заряженные  и  нейтральные.  Наиболее   известные   и   широко
распространённые такие адроны как нейтрон и протон.
  Существование и свойства большинства известных адронов были установлены в
опытах на ускорителях. Открытие множества  разнообразных  адронов  поставило
физиков в тупик, но со временем   их   удалось  классифицировать  по  спину,
заряду и массе.


4.2 Теории элементарных частиц

  Квантовая механика позволяет описывать движение элементарных  частиц,  но
не их порождение или уничтожение, т.е. применяется лишь для описания  систем
с неизменным числом частиц. Обобщение квантовой механики является  квантовая
теория ноля — это квантовая теория  систем  с  бесконечным  числом  степеней
свободы (физических полей), учитывающая требования и квантовой  механики,  и
теории относительности. Потребность в  такой  теории  порождается  квантово-
волновым  дуализмом,  существованием  волновых  свойств   всех   частиц.   В
квантовой теории  поля  взаимодействие  представляют  как  результат  обмена
квантами  поля,  а  полевые  величины   объявляются   операторами,   которые
связывают с актами рождения и уничтожения квантов поля, т.е. частиц.
  В середине XX в. была создана теория электромагнитного  взаимодействия  —
квантовая  электродинамика  (КЭД).  Это  продуманна  мельчайших  деталей   и
оснащенная совершенным математическим аппаратом теория взаимодействия  между
собой  заряженных  элементарных  частиц  (прежде   всего,   электронов   или
позитронов) посредством обмена фотонами. В КЭД  для  описания  электромагнит
взаимодействия   использовано   понятие    виртуального    фотона,    теория
удовлетворяет  основным  принципам  как  квантовой  теории  так   и   теории
относительности.
  В центре теории анализ актов  испускания  или  поглощения  одного  фотона
одной заряженной частицей, а также аннигиляции электронной позитронной  пары
в фотон или порождение фотонами такой пары.
  Если в классическом описании электроны  представляются  в  виде  твердого
точечного шарика,  то  в  КЭД  окружающее  электрона  электромагнитное  поле
рассматривается как облако виртуальных фотонов, которое  неотступно  следует
за электроном, окружая его  квантами энергии. Фотоны  возникают  и  исчезают
очень быстро, а электроны движутся в пространстве не по вполне  определенным
траекториям. Еще можно тем или иным способом определить  начальную  конечную
точки пути — до и после рассеяния, но сам путь в промежутке между началом  и
концом движения остается неопределенным.
  Описание взаимодействия с помощью частицы-переносчика  в  КЭД  привело  к
расширению понятия фотона. Вводятся понятия реального (кванта видимого  нами
света)  и  виртуального  (призрачного)  фотона,   который   «видят»   только
заряженные частицы претерпевающие рассеяние.  За создание КЭД  С.  Томанага,
Р. Фейнман и Дж. Швин-были удостоены Нобелевской премии за 1965  г.  Большой
вклад в становление КЭД был внесен  и  нашим  выдающимся  физиком-теоретиком
Л.Д. Ландау. После  подобного  триумфа  КЭД  была  принята  как  модель  для
квантового описания трех других фундаментальных взаимодействий.  Разумеется,
полям, связанным с другими  взаимодействиями,  должны  соответствовать  иные
частицы-переносчики.


4.3 Теория кварков

Теория кварков — это теория строения  адронов.  Основная  идея  этой  теории
очень проста: все адроны построены из более мелких частиц  —кварков.  Кварки
несут дробный электрический заряд, который доставляет либо -1/3,  либо  +2/3
заряда электрона. Комбинация из двух и трех кварков  может  иметь  суммарный
заряд, равный нулю или единице. Все  кварки  имеют  спин  -,  следовательно,
относятся к фермионам. Основоположники теории  кварков  Гелл-Манн  и  Цвейг,
чтобы учесть все известные в 60-е гг. адроны ввели три сорта кварков: u  (от
слова up), d (от down-нижний), s (от strange-странный).
  Кварки могут соединяться друг с другом одним из двух возможных  способов:
либо тройками, либо парами  кварк  –  антикварк.  Из  трёх  кварков  состоят
сравнительно  тяжёлые  частицы  –  барионы;  наиболее  известные  барионы  –
нейтрон и протон. Более лёгкие пары  кварк  –  антикварк  образуют  частицы,
получившие название мезоны. Например, протон состоит из двух  “u”  и  одного
“d” кварка (uud), а нейтрон – из двух “d” и одного “u”  кварков.  Чтобы  это
“трио” кварков  не  распадалось,  необходима  удерживающая  их  сила,  некий
“клей”.
  Кварки  скрепляются  между  собой  сильным  взаимодействием.  Переносчики
сильного  взаимодействия  –  глюоны  (цветовые   заряды).   Область   физики
элементарных частиц,  изучающая  взаимодействие  кварков  и  глюонов,  носит
название  квантовой  хромодинамики.  С  созданием  квантовой   хромодинамики
появилась надежда на построение единой теории всех  (или  хотя  бы  трех  из
четырех) фундаментальных взаимодействий. Модели, единым образом  описывающие
как бы три из четырех фундаментальных  взаимодействий,  называются  моделями
Великого объединения. Теоретические схемы,  в  рамках  которых  объединяются
все известные  типы  взаимодействий  (сильное,  слабое,  электромагнитное  и
гравитационное) называются моделями супергравитации.
  В  настоящее  время   большинство   физиков   считает   кварки   подлинно
элементарными частицами – точечными, неделимыми и не обладающими  внутренней
структурой. В этом отношении они напоми
Пред.67
скачать работу

Современная физическая картина мира

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ