Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Трех- и четырехволнове рассеяние света на поляритомах и кристаллах ниобата лития с примесями

ния. Отклонение луча по  горизонтали  соответствовало  частоте
рассеянной волны,  по  вертикали  -  углу  рассеяния  в  плоскости  волновых
векторов  накачек.  Устройство  кассетной   части   спектрографа   позволяет
проводить как фотографическую, так  и  электронную  регистрацию  сигнала.  В
последнем случае приемником сигнала служит  ФЭУ2,  работающий  в  аналоговом
режиме.  Его  сигнал   через   широкополосный   усилитель   с   регулируемым
коэффициентом  передачи  поступает  в  быстродействующий  стробируемый   АЦП
интегрирующего типа, входящий в состав крейта КАМАК и  далее  в  управляющую
ЭВМ типа IBM PC/AT. Управляющая ЭВМ посредством блоков,  входящих  в  состав
крейта КАМАК, осуществляет  синхронизацию  и  управление  работой  отдельных
узлов  установки.  В  настоящем  варианте  установки,  при   фотоэлектронной
регистрации спектра, ФЭУ был неподвижен, и  перед  ним  была  помещена  щель
переменной  ширины  с  микрометрическим  винтом.  Сканирование  спектра   по
частоте осуществлялось путем поворота призменной части спектрографа  шаговым
двигателем ШД1.  Другой  двигатель  ШД2  служит  для  поворота  кристалла  в
плоскости, содержащей  все  лучи  накачек,  что  дает  возможность  изменять
расстройку фазового синхронизма в образце. Дополнительный фотоприемник  ФЭУ1
служит для контроля мощности  накачки.  Использование  прерывателя  пробного
луча  ПЛ  позволяет  автоматически  вычитать  фон,  связанный  с   засветкой
фотоприемника  излучением  суммарной  частоты  двух  инфракрасных   лазеров.
Оптическая  схема   установки   ориентирована   на   регистрацию   стоксовой
компоненты  рассеянного  излучения.  Это  позволяет  легко   переходить   от
наблюдения  спонтанного  трехфотонного  рассеяния  света  на  поляритонах  к
наблюдению рассеяния на когерентно  возбужденных  состояниях  среды  простым
включением ИК накачек, поскольку в обоих случаях рассеянное излучение  лежит
в одном частотно-угловом интервале.



Глава   4.   Исследование   характеристик   кристаллов   методом    активной
спектроскопии.
             Четырехволновое  рассеяние  света  возбуждалось  в   кристаллах
ниобата лития, легированных магнием Mg:LiNbO3  c  концентрацией  примеси  Мg
0.68масс.%  и  0.79масс.%  (кристаллы   No.4,5).   Данные   по   показателям
преломления в видимой и ближней ИК области для кристалла No.4 были  получены
путем интерполяции данных для кристаллов No.3,5. В эксперименте  возбуждался
поляритон в окрестностях частот 541см-1, 550см-1,  558.5см-1,  560см-1.  Для
этого для каждого выбранного значения частоты поляритона (P  устанавливается
частота генерации  перестраиваемого  лазера  (2  в  соответствии  со  вторым
уравнением из (12). Затем лучи  ИК  накачек  направлялись  на  кристалл  под
фиксированными углами (1 и  (2  к  направлению  распространения  зондирующей
накачки. Далее  измерялась  зависимость  интенсивности  сигнала  на  частоте
(S=(L-(1+(2 от угла поворота  кристалла  (  в  плоскости  волновых  векторов
накачек.
      Спектральные ширины линий накачек составляли приблизительно 1см-1  для
излучения основной и второй гармоник YAG:Nd+3-лазера и не  более  6см-1  для
перестраиваемого лазера. Ширины  линий  рождавшегося  сигнального  излучения
полностью соответствовали  частотной  структуре  накачек.  Пиковая  мощность
накачек на входе в кристалл: пробной волны (0.25 Мвт, первого  возбуждающего
луча (0.05  Мвт,  второго  возбуждающего  луча  (0.01  Мвт.  В  эксперименте
использовались накачки с частотами (L и (1  с  необыкновенной  поляризацией,
излучение  перестраиваемого  [pic]-лазера  имело  обыкновенную  поляризацию.
Величина  интенсивности  сигнала  четырехфотонного  рассеяния   при   точной
настройке углового синхронизма существенно - почти на 4 порядка -  превышала
интенсивность  спонтанного  трехволнового   рассеяния.   При   этом   сигнал
спонтанного рассеяния собирался со  всей  длины  образца  (1  см,  а  сигнал
четырехфотонного рассеяния  -  лишь  с  области  пересечения  лучей  накачек
длиной (0,5-1мм.
      Для  каждой  фиксированной  сигнальной  (а,  значит,  и  поляритонной)
частоты область решений условий точного синхронизма в пространстве углов  (,
(1 и (2 представляет собой участок кривой.  С  учетом  возможной  расстройки
синхронизма эта кривая должна размываться. Для каждой  разности  частот  (1-
(2=(P была проведена серия измерений формы линии Is((), в  которой  взаимная
ориентация зондирующей волны и одной из ИК накачек оставалась постоянной  на
входе кристалла, а угол падения другой ИК накачки  менялся  от  постанова  к
постанову. Типичный вид отдельной формы линии рассеяния приведен на  рис.17.
На нижней оси  абсцисс  отложена  расстройка  пространственного  синхронизма
прямого процесса, на верхней оси абсцисс отложен  угол  поворота  кристалла.
Линия рассеяния имеет  один  ярко  выраженный  максимум  с  угловой  шириной
порядка 0.50, в единицах волновых расстроек - 600 см-1 . Однако,  по  ширине
этой линии  нельзя  определить  величину  поглощения,  так  как  существенна
расходимость лучей. Было проверено, что при уменьшении расходимости  первого
возбуждающего   луча   уменьшается   ширина   линии   рассеяния.   Также   в
интенсивность  сигнала  складывается  рассеяние  на  соседних   частотах   с
определенной  расстройкой,  так  как  возбуждается  поляритон  с   частотной
шириной порядка 5 см-1. Каждая серия подобных измерений формы  линии  Is((),
снятая при фиксированном угле (2 и переменном угле  (1,  представляла  собой
распределение Is(a,(1).
      На  верхнем  графике  рис.18  на  плоскости  координат  угол  поворота
кристалла ( - угол падения ИК волны  (1  представлены  результаты  измерений
для одной серии, в  рамках  которой  сохранялись  постоянными  угол  падения
(2=410 и центральная частота генерации (2 перестраиваемого  ИК  лазера,  при
которой возбуждается поляритон на  частоте  (p=541  см-1.  Точками  отмечены
положения максимумов экспериментально  наблюдавшихся  кривых  Is(().  Размер
вертикальных штрихов соответствует ширинам  максимумов.  На  нижнем  графике
рис.18 представлена интенсивность  рассеянного  излучения  в  максимуме  при
каждом положении угла (1. При прохождении этой  серии  измерений  при  углах
заведения  первого   “разогревающего”   луча   (1=600-680,   последовательно
возбуждался поляритон на частотах (p=539-543  см-1.  Наблюдалось  увеличение
интенсивности  рассеянной  волны  при  (1=640-650,  так  как   интенсивность
второго “разогревающего” луча имеет  максимум  на  частоте,  соответствующей
частоте поляритона (p=541 см-1. Зная взаимную ориентацию  и  длины  волновых
векторов [pic] , можно определить из уравнений (13) и (16)  длину  волнового
вектора и показатель преломления  поляритона.  Основную  ошибку  в  точность
измерения   показателя   преломления   вносит   ширина    линии    генерации
перестраемого лазера.
      На графиках рис.19 представлены результаты серии  измерений  для  угла
(2=29.50 и центральной частоты генерации (2 перестраиваемого ИК лазера,  при
которой возбуждается поляритон на  частоте  (p=550  см-1.  В  данном  случае
наблюдается максимальная интенсивность сигнальной  волны  при  угле  (1=570,
это говорит о том, что при  этом  угле  возбуждается  поляритон  на  частоте
(p=550 см-1. На рис.20 представлены  перестроечные  кривые  серии  измерений
для двух кристаллов с концентрацией примеси магния 0.68масс.%  и  0.79масс.%
для угла (2=18.50. При этом возбуждается  поляритон  в  окрестности  частоты
(p=560  см-1.  Очевидно  отличие  в  перестроечных  кривых  и  в   положении
максимума интенсивности рассеянной волны  для  двух  кристаллов.  На  рис.21
представлена  перестроечная  кривая  серии   измерений   для   кристалла   с
концентрацией примеси магния 0.41масс.% для угла (2=00. Этот кристалл  имеет
отличное  от  двух  предыдущих  кристаллов  направление   оси   Z,   поэтому
необходимы другие значения углов заведения лучей, чтобы возбудить  такую  же
частоту  поляритона.  Аналогично  можно  определить  показатель  преломления
поляритона для этих трех образцов кристаллов на частоте  (p=560 см-1.
      Полученные с помощью четырехволновой методики  значения  обыкновенного
показателя преломления на  частоте  560  см-1  для  кристаллов  с  различной
концентрацией магния  равны:  no(0.41масс.%Mg)=6.53,  no(0.68масс.%Mg)=6.37,
no(0.79масс.%Mg)=6.2.  Основную  долю  в  погрешность  измерения  no  вносит
точность измерения частоты  перестраемого  лазера  и  частотная  ширина  его
генерации. Однако, при фиксированной частоте поляритона  точность  измерения
частоты  перестраемого  лазера  на  ошибку  величины  изменения   показателя
преломления не влияет. Поэтому в данном случае  ошибка  измерения  изменения
показателя преломления в зависимости от концентрации  примеси  не  превышает
(0.02. Таким образом, мы можем сказать, что на верхнем  фононном  поляритоне
проявляется  аналогичная  зависимость,  как  и  в  видимом  диапазоне:   при
увеличении концентрации примеси показатель преломления падает.



[pic]


                     Рис.17. Форма линии рассеяния при повороте кристалла.

[pic]
Рис.18. Перестроечная кривая (((1)  и  интенсивность  рассеянного  излучения
I((1) при  угле  падения  (2=410  и  возбуждении  поляритона  в  окрестности
частоты (p=541см-1 для  кристалла  ниобата  лития  с  концентрацией  примеси
магния 0.68масс.%.
[pic]
Рис.19. Перестроечная кривая (((1)  и  интенсивность  рассеянного  излучения
I((1) при угле падения  (2=29,50  и  возбуждении  поляритона  в  окрестности
частоты (p=550 см-1 для кристалла  ниобата  лития  с  концентрацией  примеси
магния 0.68масс.%.
[pic]
Рис.20. Перестроечная кривая (((1)  и  интенсивность  рассеянного  излучения
I((1) при угле падения  (2=18,50  и  возбуждении  поляритона  в  окрестности
частоты (p=560 см-1 для кристаллов ниобата  лития  с  концентрацией  примеси
магния:
0.68масс.%       (; 0.79масс.%     (.
12345След.
скачать работу

Трех- и четырехволнове рассеяние света на поляритомах и кристаллах ниобата лития с примесями

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ