Векторы
.
Определить, перпендикулярны они друг другу или нет.
Решение.
Найдем сначала координаты векторов. АВ = ( -3; 3; 0) и СD = (3; 3; 3).
Вычислим теперь скалярное произведение этих векторов:
АВ х СD = ( -3) х 3 + 3 х 3 + 0 х 3 = 0.
Последнее и означает, что АВ СD.
Задача 2.
Дан произвольный треугольник АВС. Доказать, что можно построить
треугольник, стороны которого равны и параллельны медианам треугольника
АВС.
Решение.
Обозначим медианы треугольника АВС через ВЕ, СF и обозначим векторы,
идущие вдоль сторон треугольника АВС, через а, в, с:
ВС = а, СА = в, АВ = с
(рис.8). Тогда
АD = АВ + ВD = АВ +[pic]= с + [pic]
аналогично определяются и другие медианы:
ВЕ = а + [pic], СF = в + [pic]
Так как, в силу условия замкнутости
ВС + СА + АВ = а + в + с =0,
то мы имеем:
АD + ВЕ + СF = ( с + [pic]) + (а + [pic]) + ( в + [pic]) = [pic]( а + в +
с) = [pic] х 0 = 0.
Следовательно, отложив от точки В, вектор В1С1 = ВЕ и от точки С1 –
вектор С1D1 = СF, мы получим.
А1В1 + В1С1 + С1D1 = АD + ВЕ + СF = 0.
А это значит (в силу условия замкнутости), что ломаная А1В1С1D1
является замкнутой, т.е. точка D1 совпадает с А1.
Таким образом, мы получаем треугольник А1В1С1 (рис.9), стороны которого
равны и параллельны медианам АD, ВЕ, СF исходного треугольника.
Задача 3.
Доказать, что для любого треугольника имеет место формула
с2 = а2 + в2 – 2ав х соs С (теорема косинусов)
Решение.
Положим: а = СВ, в = СА,
с = АВ (рис.10).
Тогда с = а – в, и мы имеем
(учитывая, что угол между векторами а и в равен С):
с2 = ( а – в )2 = а2 – 2ав + в2 = а2 – 2ав х соs С + в2.
Задача 4.
Докажите, что сумма квадратов диагоналей параллелограмма равна сумме
квадратов его сторон.
Решение.
Пусть четырехугольник АВСD – параллелограмм (рис.11). Имеем векторные
равенства
АВ + AD = АС, АВ – АD = DВ.
Возведем эти равенства в квадрат. Получим:
АВ2 + 2 АВ х АD + АD2 = АС2, АВ2 – 2АВ х АD + АD2 = DВ2
Сложим эти равенства почленно. Получим:
2АВ2 + 2 АD2 = АС2 + DВ2.
Так как у параллелограмма противолежащие стороны равны, то это
равенство и означает, что сумма квадратов диагоналей параллелограмма равна
сумме квадратов его сторон, что и требовалось доказать.
Задача 5.
Даны три точки: А ( 1; 1), В ( -1; 0), С ( 0; 1). найдите такую точку D
( х; y), чтобы векторы АВ и СD были равны.
Решение.
Вектор АВ имеет координаты –2, -1. Вектор СD имеет координаты х – 0, y –1.
Так как АВ = СD, то х – 0 = -2, y –1 = -1. Отсюда находим координаты точки
D: х = -2, y = 0.
Задача 6.
Даны два вектора АВ и СD, причем А ( -1; 2; 4), В ( -4; 5; 4), С ( -1;
-2; 2), D ( 2; 1; 5).Определить, перпендикулярны они друг другу или
нет.
Решение.
Найдем сначала координаты векторов. АВ = ( -3; 3; 0) и СD ( 3; 3; 3).
Вычислим теперь скалярное произведение этих векторов:
AB х CD = ( -3) х 3 + 3 х 3 + 0 х 3 = 0.
Последнее озночает, что АВ СD.
Рассмотренные выше примеры задач показывают, что векторный метод
является весьма мощных средством решения геометрических и многих физических
(и технических) задач.
Содержание:
1. Что такое вектор?
2. Сложение векторов.
3. Равенство векторов.
4. Скалярное произведение двух векторов и его свойства.
5. Свойства операций над векторами.
6. Доказательства и решение задач.
Используемая литература.
1. «Векторы в школьном курсе геометрии». (1976 г.)
В.А.Гусев. Ю.М.Колягин.
Г.Л.Луканкин.
2. «Векторы в курсе геометрии средней школы. (1962 г.)
В.Г.Болтянский. И.М.Яглом.
| | скачать работу |
Векторы |