Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Волоконно-оптические линии связи

      |

      В середине 70-х  годов  работы  по  передаче  сигналов  по  волоконно-
оптическим  линиям  приобрели  широкий  размах.  Техника  оптической   связи
родилась во второй раз - и теперь окончательно.

                                 Глава пятая


            СВЕТОВОД — ПОСРЕДНИК МЕЖДУ ПЕРЕДАТЧИКОМ И ПРИЕМНИКОМ


  5.1 Ослабление означает потерю световой энергии

      Уменьшение потерь света  являлось  ключевой  первоочередной  проблемой
техники оптической связи. Два  фактора  являются  основными  причинами  этих
потерь: поглощение света  и рассеяние света.
      Уже при обсуждении лазерного эффекта мы столкнулись с тем,  что  атомы
реагируют селективно на длину волны излучения  в  зависимости  от  структуры
оболочки и открытого Планком соотношения между энергией  и  частотой.  Таким
образом, следует  ожидать,  что  и  «прозрачный»  исходный  материал  нашего
световода,  прежде  всего  лишенный   примесей,   прозрачен   и   не   имеет
значительных потерь  только  в  определенном  диапазоне  частот.  На  других
длинах  волн  возникает  явление  резонанса,  при  этом   световая   энергия
поглощается и превращается в теплоту.
      Фактически чистое кварцевое стекло (SiO2), которое  предпочтительно  в
качестве исходного материала для световода, обнаруживает такие  резонансы  в
области длин волн 10-20 мкм. Эта область лежит  за  пределами  области  длин
волн, используемых сегодня  в  технике  связи.  В  спектральной  области,  в
которой излучают современные лазеры и  светоизлучающие  диоды,  максимальное
значение ослабления в SiO2  мало,  но  для  длин  волн  свыше  1,6  мкм  его
действие ощутимо и возрастает с увеличением длины волны.
     К сожалению, требуемая  чистота  кварцевого  стекла  практически  едва
достижима. Как правило, светопроводящий материал более или менее  загрязнен.
При  этом  прежде  всего  следует  назвать  ионы  металлов  (железа,  хрома,
кобальта, меди). Их долю в SiO2 необходимо уменьшить до значений 10-8 -  10-
9,  на  столько  подавляя  максимумы  поглощения  энергии  этими  примесными
материалами, чтобы  достигнуть  коэффициента  ослабления  около  1  дБ/км  и
менее. Исключительно важна также роль ионов ОН. Их  главный  резонанс  имеет
длину волны около 2,7 мкм и со своими гармониками (второй, третьей и т.  д.)
является причиной более или  менее  значительных  максимумов  ослабления  на
длинах волн.],35, 0,95 и 0,75 мкм. А эти значения довольно близки  к  длинам
волн современных лазеров на GaAs и светоизлучающих диодов и поэтому с  точки
зрения связи представляют большой интерес. В связи с  этим  «обезвоженность»
стекла чрезвычайно важна.
     Вторым существенным фактором влияния на потери  в  световоде  является
рассеяние света. Оно возникает из-за неравномерностей,  которые  образуются,
прежде  всего,  в  течение  охлаждения  в   процессе   плавки   стекла.   Их
количественная доля в общем ослаблении различна для стекла и газа и  зависит
от технологии и  от  применяемого  исходного  материала.  Во  всяком  случае
типичным является сильный спад мощности с увеличением длины волны, а  именно
на четверть значения.  Итак,  чтобы  получить  меньшие  значения  потерь  на
рассеяние, целесообразно применять возможно большие длины волн.

  5.2 Разница  во времени пробега  ограничивает пропускную способность
линии связи

     Упомянутые в п. 4.1  оптимистичные  прогнозы  об  огромной  пропускной
способности оптических кабелей, связи исходят  из  соображения,  что  ширина
полосы передаваемого сигнала всегда должна быть несколько меньше,  чем  сама
несущая частота. Пропускная способность стеклянного волокна не  безгранична.
Чтобы  передать  телефонный  разговор  как   последовательность   импульсов,
необходимо передать большое число  (конкретно  64  000)  двоичных  знаков  в
секунду (64  000  бит/с  или  64  кбит/с).  Чтобы  преобразовать  непрерывно
изменяющийся ток микрофона в двоичный сигнал, его необходимо, прежде  всего,
воспроизвести с  помощью  импульсов.  Найденные  значения  амплитуды  теперь
будут изображаться двоичным числом и посылаться как двоичные  сигналы  между
двумя посылками импульсов. Со стороны приемника следует  такое  же  обратное
преобразование. Чтобы передать сигнал с более высоким качеством,  необходимо
различать по  меньшей  мере  256  амплитудных  значений  микрофонного  тока.
Поэтому требуется  восьмикодовая  система  (8  двоичных  знаков  на  кодовое
слово)  для  каждого  значения  импульсной  посылки.  Для  передачи   одного
движущегося телевизионного изображения требуется скорость передачи  80  млн.
бит в секунду (80 Мбит/с).
     В качестве пропускной способности линии — все равно из меди или стекла
—  принимается  наибольшая  скорость  передачи  сигнала  через  эту   линию,
измеренная в битах в секунду (бит — двоичная цифра).
     Единица двоичной информации может быть  приблизительно  пересчитана  в
соответствующую ширину полосы  частот,  как  обычно  делается  в  аналоговой
передающей технике для обозначения характеристики сигналов или кабелей.  Так
как для передачи информации со  скоростью  2  бит/с  теоретически  требуется
ширина полосы по крайней  мере  1  Гц  (практически  около  1,6  Гц),  можно
приблизительно  определить  скорость   передачи   сигнала   или   пропускную
способность  в  битах  в  секунду  и  соответствующую   ей   ширину   полосы
пропускания в герцах.
     Возьмем для примера двоичный закодированный телефонный сигнал.  Каждый
единичный сигнал этой последовательности (единичный импульс тока или  света)
должен быть не длиннее, чем 1/64000 с, чтобы не мешать  следующим  сигналам.
Пропускная способность линии принципиально тем  выше,  чем  короче  импульсы
можно по ней передать.
     Точно так же существуют границы и для световода. Принцип его  действия
ранее упоминался: свет  распространяется  зигзагообразно  в  светопроводящем
сердечнике благодаря полному внутреннему  отражению  от  стенок,  к  внешней
стороне  которых  примыкает  среда  с  малым  коэффициентом  преломления   —
оболочка.  Это  полное  отражение  связано  с  одним  условием.  Угол  между
световым лучом и оптической осью световода должен быть не более  предельного
угла  полного  внутреннего  отражения   (в.   Он   определяется   отношением
показателей преломления в сердечнике пс, и в оболочке по:
                                cos( =nо I nс
     Можно  было  бы  отдать  предпочтение  волокну  с  большим   различием
показателей преломления, так как оно, очевидно, может воспринять и  передать
больше света от источника с большим углом излучения. Это  преимущество  было
бы действительно решающим, если  бы  требования  стояли  только  в  возможно
более высокой пропускной способности световода.

  5.3 Пропускная способность волоконных световодов

      В  одномодовых  (мономодовых)  и  многомодовых  световодах  разная  (в
одномодовых больше из-за их толщины  стержня).  Вызванный  различной  длиной
пробега в световоде временной разброс  элементов  выходного  сигнала  и  как
следствие рассеяние части  энергии  на  выходе  световода  называют  модовой
дисперсией. К сожалению, она является не единственной  причиной  ограничения
пропускной способности. Необходимо еще добавить так называемую  материальную
дисперсию.  Она  состоит  в  том,  что  показатель  преломления  пс  стержня
световода зависит от длины волны. Длинноволновые  красные  лучи  отклоняются
меньше, чем коротковолновые синие. Этот  эффект  не  имел  бы  значения  для
техники световой связи, если бы применяемые источники излучали  свет  только
одной длины волны.  К  сожалению,  этого  не  бывает.  Хотя  ширина  спектра
полупроводникового лазера относительно узка, он излучает  свет  в  некотором
интервале длин волн шириной несколько  нанометров.  Светоизлучающий  диод  в
этом отношении значительно превосходит его — приблизительно на 30 —  40  нм.
Ограничение этой полосы невозможно без потери энергии. Именно эти  различные
спектральные составляющие излучения  проходят  через  световод  с  различной
скоростью  (v=c/nс),  что,  конечно,  приводит   к   уширению   импульса   и
ограничивает пропускную способность световода.
      В волокне со ступенчатым профилем показателя  преломления  преобладает
модовая дисперсия вследствие большой разницы времен пробега между  осевым  и
граничными  лучами.  В  градиентном   световоде   с   оптимальным   профилем
показателя преломления обе дисперсии становятся приблизительно  одинаковыми.
Напротив, в мономодовом волокне  модовая  дисперсия  не  имеет  значения,  и
только материальная дисперсия определяет характеристику передачи.
      И  третий  фактор,  влияющий  на  качество  передачи   —   полноводная
дисперсия. Она возникает только в мономодовых световодах, а  именно  потому,
что  единственная  способная   к   распространению   мода   имеет   скорость
распространения, зависящую от длины волны.
      Анализ причин  и  влияния  материальной  дисперсии  на  характеристики
передачи  позволили  сделать  выводы,  которые  представляют  исключительный
интерес для практики и оказывают решающее  влияние  на  дальнейшее  развитие
световодной  техники.  Прежде  всего,  выяснилось,  что  уширение  импульса,
вызванное  материальной  дисперсией,  в  значительной  степени  определяется
микроструктурой зависимости показателя преломления данного  светопроводящего
материала  от  длины  волны.  Если  на  графике  такой  зависимости  имеется
участок, на котором кривая стремится к нулю, то на этой  длине  волны  можно
ожидать минимального уширения импульса и  пренебречь  влиянием  материальной
дисперсии.
      Действительно, на кривых профиля показателя  преломления  можно  найти
такую точку, например, для кварцевого стекла при ( = 1,27mkm. Это  означает,
что если среди узкополосных источников  света  имеются  такие,  для  которых
материальная дисперсия равна нулю, то соответственно
12345След.
скачать работу

Волоконно-оптические линии связи

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ