Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Ядерная энергетика

атомная  электростанция
в подмосковном городе Обнинске. В 1959 г.  спущен  на  воду  первый  в  мире
атомный ледокол «Ленин».  Таким  образом,  ядерная  физика  создала  научную
основу  атомной  технике,  а  атомная  техника  в   свою   очередь   явилась
фундаментом  ядерной  энергетики,  которая,  опираясь  на  ядерную  науку  и
технику, стала в настоящее время  развитой  отраслью  электроэнергетического
производства.


   Исторические решения XXVI съезда КПСС определили пути развития народного
хозяйства страны на ближайшие годы  и  на  дальнюю  перспективу.  Был  также
намечен  ход  развития  ядерной  науки  и  техники,  в  том  числе   ядерной
энергетики    как    вполне    определившейся    самостоятельной     отрасли
электроэнергетического производства.
   Ядерная энергетика — очень молодая отрасль науки  и  техники.  Первая  в
мире атомная электростанция (АЭС) в г. Обнинске Калужской  области  вошла  в
строй всего четверть века назад: 27 июня 1954 г.  она  выдала  электрическую
энергию в Московскую энергосеть. За это время  ядерная  энергетика  выросла,
возмужала   и   вышла   на   широкую   дорогу   промышленного   производства
электрической энергии  во  многих  странах  мира  —  Советском  Союзе,  США,
Англии, Франции, Канаде, Италии, ФРГ,  Японии,  Швеции,  Чехословакии,  ГДР,
Болгарии, Швейцарии, Испании, Индии, Пакистане, Аргентине и др.  |На  январь
1981 г. во всем мире  введено  более  250  атомных  электростанций  (блоков)
установленной мощностью около 140 млн.  кВт.  Ни  одна  отрасль  техники  не
развивалась так быстро,  как  ядерная  энергетика.  Обычным  электростанциям
понадобилось 100 лет, чтобы  достичь  такого  уровня  инженерной  техники  и
эксплуатации, какого достигла уже к 1975 г. ядерная энергетика.
   Ученые-атомщики, руководители соответствующих фирм и ведомств по-разному
представляют развитие ядерной энергетики, но в одном  они  сходятся:  у  нее
хорошие перспективы и в недалеком  будущем  на  какое-то  время  она  станет
одним из основных источников получения энергии, в том  числе  электрической.
Предполагается, что уже в 1985 г.  рост  атомно-энергетических  мощностей  в
мире  достигнет  300  млн.  кВт  (некоторые  эксперты  считают   эту   цифру
завышенной,  учитывая  энергетический  кризис   и   некоторые   политические
обстоятельства). На Х конгрессе Международной энергетической  конференции  в
Стамбуле в сентябре 1977  г.  суммарная  мощность  АЭС  в  мире  к  2000  г.
определялась в 1300—1650 млн. кВт. По  новым  прогнозам  зарубежных  ученых,
удельный вес мировой ядерной энергетики к 2000 г. достигнет 25—30%  (и  даже
40%) общей выработки электрической энергии в  мире.  .Такому  росту  ядерной
энергетики способствует ряд обстоятельств:
   с одной стороны — уменьшение  природных  запасов  органического  топлива
(газа, нефти, а во многих  экономических  районах  и  угля),  их  повышенная
сернистость,  зольность,  вызывающая  загрязнение   окружающей   среды   при
сжигании этих видов топлива, резкое удорожание и сложность их  добычи  и  т.
д., с  другой  —  постоянный  рост  потребности  человечества  в  топливе  и
электроэнергии. При истощении запасов  органического  топлива  использование
ядерного топлива (урана, тория и  плутония)  —  пока  единственный  реальный
путь надежного обеспечения человечества так необходимой  ему  энергией.  Как
известно, при делении ядер урана и плутония выделяется  огромное  количество
энергии,   использование   которой   позволяет   создавать    крупные    АЭС
промышленного типа.
   Уран широко распространен в природе, но богатых  по  содержанию  залежей
урановых  руд   (как,   скажем,   железа   или   угля)   нет.   Промышленные
урансодержащие руды имеют очень  небольшую  концентрацию:  0,1-0,5%  и  даже
меньше 0,08-0,05%. Правда, встречаются богатые, уникальные  месторождения  с
содержанием до 10%, но их очень мало  и  запасы  урана  в  них  сравнительно
невелики.  В  земной  коре  урана  много,  но  он  почти  весь  находится  в
рассеянном  состоянии  и  не  в  собственно  урановых,  а  в  урансодержащих
минералах,  где  он  изоморфно  замещает  торий,  цирконий,   редкоземельные
элементы. Уран содержится и в гранитах, и в базальтах, но  концентрация  его
там настолько мала (4-10~4 и 1-10~*% соответственно), что извлечение  станет
возможным только в очень  отдаленном  будущем.  Однако  эти  микроколичества
представляют собой  грандиозную  цифру:  300  тыс.  Q  (=3-1014  кВт-ч).  По
некоторым прогнозам, запасы урана и тория в  земной  коре  могут  обеспечить
человечество энергией на протяжении 3 млрд. лет при ежегодном потреблении З-
Юккал.
   Поиск урана, и, главное, определение его запасов  как  очень  ценного  и
важного  стратегического  сырья  проводится  во  многих  странах   мира.   В
капиталистических странах первые три места по запасам и содержанию  урана  в
рудах занимают Канада, ЮАР и США.  По  добыче  первое  место  занимают  США,
второе Канада, третье ЮАР. В природе есть  один-единственный  изотоп  урана,
который может поддерживать цепную реакцию деления ядра  урана  —  это  уран-
235. В одном акте деления ядра урана выделяется энергия на один атом  в  200
млн. раз большая, чем при любой химической реакции. Если бы все изотопы в  1
г урана подверглись делению, то выделилась бы энергия в 20  млн.  ккал,  что
соответствует 23 тыс. кВт-ч  тепловой  энергии.  Однако  в  природном  Уране
очень трудно получить самоподдерживающуюся цепную реакцию деления,  так  как
делящийся   изотоп   уран-235   в   нем    содержится    в    незначительном
количестве—всего 0, 71%, а остальные 99, 29% составляет  неделящийся  изотоп
уран-238.  Поэтому  создаются  специальные  устройства  —   ядерные   котлы,
реакторы, в которых  при  определенных  контролируемых  условиях  происходит
самоподдерживающаяся цепная реакция деления ядер  тяжелых  элементов.  Такие
реакторы, имеющие в своем составе  ядерное  топливо  (горючее),  специальные
виды  замедлителя  нейтронов,  отражатель   и   охладитель,   позволяют   из
неделящихся изотопов урана-238  или  тория-232  получать  делящиеся  изотопы
урана-233 и новый вид ядерного топлива — плутоний-239, которые  затем  могут
быть использованы в качестве ядерного горючего.
   Именно в образовании новых дополнительных количеств  делящихся  изотопов
(а не только в израсходовании загруженного в  реактор  топлива)  заключается
исключительная  ценность  и  специфическая  особенность  ядерного  горючего.
Кроме обычного воспроизводства, возможно  так  называемое  расширенное,  при
котором  образующегося  ядерного  горючего  получается   больше,   чем   его
потребляется (отношение числа  получающихся  атомов  делящегося  вещества  к
числу потребленных  называется  коэффициентом  воспроизводства).  С  помощью
процесса воспроизводства ядерного горючего  (за  счет  неделящихся  изотопов
урана или тория) можно  во  много  раз  увеличить  мировые  запасы  ядерного
горючего, что и пытаются осуществить введением в эксплуатацию  реакторов  на
быстрых нейтронах.
   Чтобы  в  системе,  в  данном  случае  в  ядерном  реакторе,  содержащей
делящиеся изотопы, например уран-235, могла поддерживаться  цепная  реакция,
необходимо выполнение ряда условий.  Во-первых,  масса  делящегося  вещества
должна быть не меньше критической, т. е. система должна  содержать  уран-235
в количестве, достаточном для того, чтобы в среднем один  нейтрон  из  числа
получающихся при каждом акте деления ядра  смог  бы  вызвать  следующий  акт
деления, прежде чем  он  покинет  систему.  Во-вторых,  система,  содержащая
ядерное топливо, должна быть окружена материалом, который как бы  улавливает
выходящие из нее нейтроны и возвращает их обратно, т. е. отражает. Вообще  в
природе не существует  материала,  отражающего  нейтроны  непосредственно  в
обратном  направлении.  Механизм  работы  отражателя  состоит  в  том,   что
попадающие  в  него   нейтроны   беспорядочно   движутся   по   искривленным
траекториям и, не испытывая захвата со стороны атомов  отражателя,  в  конце
концов частично (в идеальном случае до  50%)  попадают  обратно  в  активную
зону.  Третье  условие  —  это  снижение  вредного   захвата   нейтронов   в
неделящихся материалах  системы,  которые  непосредственно  не  участвуют  в
цепной  реакции,  но  их  ядерные   характеристики   таковы,   что   требуют
оптимального решения в выборе  соответствующих  материалов  с  точки  зрения
сохранения нейтронов.
   И,  наконец,  одним  из  важнейших   условий   осуществления   полностью
контролируемой цепной реакции деления ядер  атомов  служит  наличие  средств
управления ею, т. е. регулирования ее хода и скорости прохождения.
   Природа размножения нейтронов и короткое время их жизни (немногим больше
10 мин) обусловливают  практически  мгновенное  изменение  скорости  реакции
даже при ничтожном изменении одного из  параметров.  Проблема  регулирования
процесса,  происходящего  в  ядерном  реакторе,  сводится   к   оперативному
управлению  ходом  физической  реакции,  к  мерам  по  поддержанию  реактора
возможно дольше в рабочем состоянии и к мерам  аварийной  защиты  реакторной
системы. При этом необходимо поддерживать реактивность реактора на  заданном
уровне. Если число возникающих нейтронов  превышает  число  поглощаемых,  то
мощность реактора  растет,  т.  е.  реактивность  положительна.  Если  число
возникающих нейтронов меньше числа поглощаемых,  мощность  реактора  падает,
т. е.  реактивность  отрицательна.  Если  число  возникающих  и  поглощающих
нейтронов  одинаково,  реактивность  реактора  равна  нулю,  т.  е.  реактор
работает в стационарном установившемся  режиме  и  его  мощность  неизменна.
"Особое  значение  в  энергетических  реакторах  имеет   теплоноситель   как
средство охлаждения реактора и переноса тепла из его активной зоны,  которое
в конечном итоге превраща
123
скачать работу

Ядерная энергетика

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ