Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Биотехнология

ее время ?-, ?- и ?-интерфероны успешно получают с применением
генноинженерных штаммов Е. coli, дрожжей, культивируемых клеток насекомых
(Drosophil?) и млекопитающих. Генно-инженерные интерфероны могут быть
очищены с использованием моноклональных антител. В случае у- и р-
интерферонов предпочтительно применение эукариотических продуцентов, так
как прокариоты не гликозилируют белки. Некоторые фирмы, например Bioferon
(ФРГ), используют не генноинженерные мутанты, а культивируемые in vitro
фибропласты человека.
Интерфероны используются для лечения болезней, вызываемых вирусами герпеса,
бешенства, гепатитов, цитомегаловиру-сом, вирусом, вызывающим опасное
поражение сердца, а также для профилактики вирусных инфекций. Вдыхание
аэрозоля интерферонов позволяет предупредить развитие острых респираторных
заболеваний. Несколько курьезной проблемой является то что интерфероны, в
частности ?-интерфероны, сами могут вызывать у пациентов простудные
симптомы (насморк, повышение температуры и т.д.). Проблема побочного
действия стоит особенно остро при длительном терапевтическом применении
интерферонов, необходимом для лечения злокачественных опухолей.
Интерфероны оказывают лечебное воздействие на организм больных раком груди,
кожи, гортани, легких, мозга, рассеянной миеломе и саркоме Капоци — два
последних заболевания характерны для лиц, страдающих приобретенными
иммунодефицитами (см. ниже). Интерфероны полезны также при лечении
рассеянного склероза.
Методы генетической инженерии позволяют получать модифицированные
Интерфероны. Антивирусная активность интерферонов варьирует при
аминокислотных заменах (J. Werenne, 1983). Американская компания Cetus
Corporation производит ?-интер-ферон, в аминокислотной последовательности
которого цистеин в положении 17 замещен на серии. Это приводит к повышению
терапевтической активности препарата, так как предотвращает наблюдаемое in
vitro формирование неактивного димера ?-интер-ферона за счет дисульфидных
связей между остатками цистеина в положении 17. Определенные надежды
возлагают на модификацию интерферонов путем получения гибридных молекул (Е.
Д. Свердлов, 1984).
Интерлейкины—сравнительно короткие (около 150 аминокислотных остатков)
полипептиды, участвующие в организации иммунного ответа. Интерлейкин-1,
образующийся определенной группой лейкоцитов крови — макрофагами, в ответ
на введение антигена стимулирует размножение (пролиферацию) Т-хелперов
(субпопуляции Т-лимфоцитов), продуцирующих, в свою очередь, интерлейкин-2.
Последний вызывает пролиферацию различных субпопуляций Т-лимфоцитов — Т-
киллеров, Т-хелперов, Т-супрессоров, а также В-лимфоцитов, продуцентов
антител. Под влиянием интерлейкина-2 из Т-лимфоцитов высвобождаются
регуляторные белки — лимфокины, активирующие звенья иммунной системы;
синтезируются также Интерфероны.
Интерлейкины, основные лечебные средства при иммунных расстройствах,
получают путем клонирования соответствующих генов в Е. coll или
культивирования лимфоцитов in vitro. Английская компания Celltech Ltd и
японская Sakyo Company предлагают синтезированный генноинженерными
бактериями интерлей-кин-1 наряду с другим тюлипептидным агентом —фактором
некроза опухолей -- для лечения ряда опухолевых заболеваний (В. Sikyta el
al., 1986).
Получаемые биотехнологическим путем факторы свертывания крови, особенно
фактор VIII (с помощью культивируемых клеток млекопитающих) и фактор IX (с
помощью генноинженер-ного штамма Е. coli), необходимы для терапии форм
гемофилии наследственной болезни, при которой кровь теряет способность
свертываться. К числу ценных с клинической точки зрения факторов,
полученных в биореакторах с культурами животных клеток, следует отнести
фактор роста В-лимфоцитов, фактор активации макрофагов, Т-заместительный
фактор, активатор тканевого плазминогена.


                Моноклокальные антитела и ДНК-или РНК-пробы.

Моноклональные антитела — продукты В-гибридомных клеток  — используют для
диагностики различных заболеваний. Обладая высокой специфичностью действия,
они обеспечивают идентификацию не только вида возбудителя, но и его
серотипа. С помощью моноклональных антител можно тестировать различные
гормоны, метаболиты, белковые факторы. Наиболее быстрый метод индикации
основан на применении антител, иммобилизованных на мембранных электродах —
аналогах ферментных биосенсоров. Они позволяют диагностировать
беременность, выявлять предрасположенность к диабету, ревматоидному артриту
(J. Col-lins et al., 1986), идентифицировать наследственные заболевания,
сопровождающиеся утратой тех или иных ферментов и других белковых
компонентов. Моноклональные антитела широко используют для диагностики рака
и определения его форм.
Трудности связаны с тем, что специфических «раковых» антигенов, по-
видимому, не бывает, и характерные для злокачественно переродившейся клетки
детерминанты могут быть с некоторой, пусть небольшой, вероятностью
обнаружены и в здоровых клетках. Перспективна диагностика рака при помощи
моноклональ-ных антител к вырабатываемым злокачественной опухолью особым
гормонам, аутокринам, ведущим к самостимуляции роста раковых клеток.
Моноклональные антитела имеют не только диагностическое, но и лечебное
значение. При аутоиммунных заболеваниях, когда иммунные клетки «ополчаются»
против собственных органов и тканей, моноклональные антитела
соответствующей специфичности могут связывать антитела, наносящие вред
организму больного. Для лечения рака предлагают использовать моноклональные
антитела, конъюгированные с токсичными для раковых клеток соединениями.
Моноклональные антитела доставляют яд точно по адресу, избегая поражения
здоровых клеток. Поэтому к моноклональным антителам можно присоединять
очень сильные токсины, например рицин — яд из клещевины, одной молекулы
которого достаточно для поражения одной клетки. В современной
фармацевтической промышленности моноклональные антитела используют для
очистки лекарственных препаратов.
Диагностическое значение имеют короткие фрагменты ДНК и РНК, несущие
радиоактивную или иную метку, так называемые ДНК/РНК-пробы. С их помощью
можно установить наличие в организме определенных типов нуклеиновых кислот,
соответствующих болезнетворным агентам, злокачественным опухолям, а также
проверить геном пациента на наличие у него тех или иных генетических
аномалий. Метод основан на комплементарном взаимодействии проб с участками
ДНК или РНК, выделенными из исследуемых клеток и фиксированными на
носителе. Взаимодействия нуклеотидных цепочек пробы с ДНК (РНК) из образца
регистрируют по радиоактивной метке или иным способом.
Моноклональные антитела и ДНК/РНК-пробы используют для диагностики болезней
животных и растений. В частности, с помощью этих проб проводят индикацию
зараженности картофеля вирусом. Диагностические средства из арсенала
биотехнологов предлагают применять для быстрого определения пола у цыплят.

                 Рекомбинантные вакцины и вакцины-антигены.

Вакцинация — один из основных способов борьбы с инфекционными
заболеваниями. Путем поголовной вакцинации ликвидирована натуральная оспа,
резко ограничено распространение бешенства, полиомиелита, желтой лихорадки.
На повестке дня — изготовление вакцин против гриппа, гепатитов, герпесов,
свинки, кори, острых респираторных заболеваний. Большое экономическое
значение имеет разработка вакцин против болезней сельскохозяйственных
животных — ящура, африканской болезни лошадей, овечьей бо-
лезни «синего языка», трипаносомозов и др. Традиционные вакцинные препараты
изготовляют на основе ослабленных, инактивиро-ванных или дезинтегрированных
возбудителей болезней.
Современные биотехнологические разработки предусматривают создание
рекомбинантных вакцин и вакцин-антигенов. Вакцины обоих типов основаны на
генноинженерном подходе.
Для получения рекомбинантных вакцин обычно используют хорошо известный
вирус коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены,
кодирующие иммуногенные белки различных возбудителей (гемагглютинин вируса
гриппа, гликопротеин D вируса герпеса, поверхностный антиген вируса
гепатита В, антиген малярийного плазмодия). Получаются вакцины против
соответствующих инфекций, хорошо зарекомендовавшие себя в опытах на
животных. К их достоинствам относится возможность создания поливалентных
вакцинных препаратов на основе объединения участков ДНК различных патогенов
«под эгидой» ДНК вируса осповакцины. Открывается возможность одномоментной
комплексной иммунизации, скажем, крупного рогатого скота против всех
опасных инфекций данной местности.
Вакцины-антигены получают, клонируя гены возбудителя болезни в Е. colt,
дрожжах, клетках насекомых и млекопитающих. Клонирован ген поверхностного
антигена HBS-вируса гепатита В (сывороточного гепатита), ген белка оболочки
УРЬвируса ящура. Вирус ящура существует в виде многих серотипов, методом
белковой инженерии удалось скомбинировать иммуногенные компоненты различных
серотипов в рамках одной вакцины-антигена.
Вакцины-антигены высокостабильны при хранении и перевозке, сравнительно
просты в изготовлении (в том числе и при крупномасштабном производстве),
содержат минимальное количество белка и поэтому малоопасны как аллергены.
Они гарантированы от остаточной инфекционности — способности вызывать
инфекционную болезнь вместо того, чтобы предохранять от нее. Проблемой
является низкая иммуногенность вакцин-антигенов. Одной из причин может быть
то, что вакцина не включает всех компонентов возбудителя, необходимых для
создания иммунитета к нему. Так, вирус, покидая клетку, часто «одевается»
ее мембраной. Компоненты этой мембраны, отсутствующие в генноинженерном
белке, могут обладать иммуноген-ными свойствами. К повышению иммуногенности
вакцин-антигенов ведет добавление адьювантов, иммобилизация вакцин на
носителях или их включение в липосо
Пред.678910
скачать работу

Биотехнология

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ