Биотехнология
Другие рефераты
Вот как объясняет ставшее за последнее время очень популярным словом
«технология» «Словарь иностранных слов»: «Технология (от греческого fechne
- искусство, ремесло, наука -{- logos - понятие, учение) — совокупность
знаний о способах и средствах проведения производственных процессов...»
Слову «биотехнология» немногим за десять лет. Оно настолько молодо,
что определение его не попало пока ни в один из словарей. Но факультеты
биотехнологии в институтах уже появились.
Биотехнология — многоотраслевая наука. Но, пожалуй, наиболее почетное
место в ней занимает, помимо генной инженерии, наука об искусственном
культивировании изолированных клеток и тканей и о ростовых либо
ингибирующих веществах.
Оторванная от коллектива себе подобных клетка в пробирке сохраняет
«память» - генетическую информацию, заложенную родителями. Но специальность
(специализацию) она утрачивает и образует при делении нечто аморфное,
напоминающее по форме морскую губку — каллус (в переводе с латинского
«мозоль»). Это ткань, которая возникает не только в пробирке, но и в
естественных условиях при ранении растения. Помимо утраты узкой
специализации клетка порой начинает вести себя, словно пациент сумасшедшего
дома. Например, активные гены вдруг
застопориваются, а «спавшие» ни с того ни с сего начинают интенсивно
работать. Клетка в «клетке», то есть в пробирке, может резко изменить
соотношение ферментных и структурных белков. В ней увеличивается число
молекул РНК, синтезирующих в
обилии те белки, к производству которых клетка ранее относилась с
прохладцей.
Однако стоит предоставить «узнице» определенные условия, как она
вновь приобретает какую-то специализацию, причем не обязательно «старую»:
взятая из корня или листа клетка образует целое растение. Регенерации
полноценных растений из
каллуса добиваются в принципе двумя путями: дифференциацией побегов и
корней посредством изменения соотношения гормонов цитокинина и ауксина или
образованием эмбриоидов. Этот соматический (асексуальный) эмбриогенез
впервые был прослежен
к 1959 году у моркови; со временем его стали применять при производстве
жизнеспособных растений у разных видов.
Небезынтересно, что в лабораториях обнаружили способность
изолированных клеток некоторых видов растений закаляться. Так, если клетки
без закалки еле переносят температуру —20° С, то с закалкой способны
выдержать и —35° С, а клетки
сибирской яблони с закалкой терпят мороз ниже 50° С. Вот только клетки
теплолюбивого лимона никаким закалкам не поддаются. Появилась возможность
отбора клеток с большой морозостойкостью из каллуса пшеницы и ели.
Изолированные клетки сохраняют способность синтезировать вещества,
присущие ей т vivo, то есть в теле живого организма, — витамины, гормоны,
алкалоиды, кумарины, стеронды и так далее. Это заинтересовало биологов с
точки зрения утилизации этих веществ для промышленности.
В лабораториях обнаружена еще одна способность клеток: отдели одну от
других или посади ее на питательную среду поодаль от сородичей, и она
наотрез откажется делиться и размножаться. Экспериментаторы, естественно,
предполагают, что «телепатия» клеток имеет химическую природу, однако
выделить и рассмотреть «в лицо» виновника «телепатии» до сих пор не
удалось. Прямо не вещество, а привидение - очень уж мала его концентрация.
Киевскому соратнику Р. Г. Бутенко —
Ю. Ю. Глебе все же удалось заставить клетку, «страдающую» от одиночества,
делиться в мельчайшей капельке питательной среды.
Чем дольше занималась лаборатория Р. Г. Бутенко культурой клеток, тем
больше интересных явлений открывалось перед ее сотрудниками. Ну хотя бы то,
что клетки каллуса, имеющие единственного предка — одну прапрапра... (и так
далее) клетку,
оказываются через несколько поколений генетически различными. Может быть,
изучив это явление, мы обнаружим, что предком обезьяны и человека был
прозаический кольчатый червь.
Изменения, наблюдаемые в изолированной культуре, могут возникать
вследствие мутаций специфических генов и хромосомных перестроек. Частота,
тип и стабильность изменчивости зависят от генотипа исходного растения и
физиолого-биохимического
состояния («настроения») клетки. Высказано предположение, что условия
изолированной культуры приводят к глубокой клеточной дестабилизации.
Широкий спектр вариантов, образующихся из культивируемого материала,
является отражением дестабилизации, за которой следуют действие отбора и
вторичные наследственные изменения в популяции клеток.
Наблюдаемая изменчивость имеет большое значение при применении
культуры клеток и тканей для улучшения сельскохозяйственных культур.
Воздействие мутагенами - веществами или радиацией, вызывающими
наследственные изменения, увеличивает частоту измененных клеток, а
использование селективных условий (например, повышенного инфекционного
фона) создает предпосылки для размножения только измененных в нужном
человеку направлении клеток. Однако многие исследователи, памятуя,
вероятно, строки стихотворения Федора
Тютчева («Природа — сфинкс. И тем она верней своим искусом губит
человека...»), отказываются от использования мутагенов, чтобы избежать
добавочных нежелательных мутаций. Тем более, что мутантных клеточных линий
возникает вполне достаточно и
без их вмешательства.
В клетках каллуса часто меняется и число хромосом. Каллус растения
гаплопаппус, например, через два года оказался состоящим на 95 процентов из
полиплоидных (содержащих в ядре более двух геномов) клеток с числом наборов
основного (базисного) числа хромосом, равным восьми и более. В США получены
полиплоидные формы табака из клеток каллуса, культивируемых вне организма,
отли-
чающиеся рядом хозяйственно ценных признаков. Выход полиплоидных форм
оказался настолько значительным, что этот метод рекомендован для
экспериментального получения полиплоидов. Такие же результаты получены у
лимона и клевера ползучего.
Да и вообще регенерировавшиеся из каллуса растения часто отличаются от
своих родителей числом хромосом. Генетически идентичное воспроизведение
генотипов через дифференциацию в культуре каллуса в настоящее время можно
осуществить у сравни-
тельно немногих видов.
Для селекции генетическая изменчивость клеток каллуса может
представить определенный интерес. На основе регенерации в культуре тканей и
органов растений получены высокопродуктивные формы подсолнечника. К
сожалению, у таких важнейших сельскохозяйственных культур, как зерновые и
бобовые, активировать морфогенез на питательных средах пока удается редко,
но есть успехи при работе и с
этими «непокорными» культурами.
На питательных средах при высокой интенсивности освещения ныне
выращивают растения-гаплоиды из пыльцевых зерен. У них вдвое меньше
хромосом, чем в обычных соматических клетках стеблей, листвы и корня
родительского растения. Из них при удвоении хромосом путем обработки
колхицином или закисью азота под давлением (есть и иные пути удвоения)
получают дигаплоиды (или, допустим, тетрагаплоиды, если основной набор
учетверен). Они гомозиготны, то есть обеспечивают проявление свой-
ственных им признаков устойчиво на протяжении многих поколений. У них, как
говорят генетики, не выщепляются новые признаки, если, конечно, не
появляются мутации - внезапные новые наследственные признаки. Гомозиготные
линии нередко
используют в селекции на гетерозис - достоверное повышение продуктивности,
качества или иного показателя против родительских форм, вовлеченных в
гибридизацию.
Используют гаплоиды и иначе. В Китае с помощью культуры пыльников
выведены короткостебельные, скороспелые и высокоурожайные сорта риса.
Применение в этой стране питательных сред, включающих картофельный
экстракт, привело к ранее недостижимому — получению гаплоидов у ржи, что
открыло новые возможности в селекции этой перекрестноопыляющейся культуры.
Получены инте-
ресные результаты у ячменя, перца, мака, люцерны, винограда, тополя, яблони
и масличного рапса. У последней культуры, проведенной через культуру
пыльников, несколько уменьшили и надеются уменьшить еще более содержание
вредных гликозидных соединений. Всего в Китае к 1984 году из пыльцевых
зерен выращено около 40 видов растений. Изучение популяций пшеницы, риса,
кукурузы и табака из
пыльников показало, что около 90 процентов удвоенных гаплоидов является
генетически однородными, хотя у 10 процентов все же отмечена нестабильность
числа хромосом и их структуры.
В нашей стране эффективный способ получения пшеницы из пыльцы в
культуре пыльников разработан саратовскими учеными В. М. Сухановым, В. С.
Тырновым и Н. Н. Салтыковой.
Самое интересное, что иногда и гибридизацию удается провести в
чашках Петри,
пробирках, вообще в каких-либо сосудах, в которые помещают изолированную от
растения семяпочку. На нее наносят пыльцу, преодолевая таким образом
самонесовместимость — отказ растения дать семена, если его пытаются
оплодотворить собственной пыльцой.
В пробирке случается порой преодолеть несовместимость довольно
отдаленных видов, и даже родов растений. Однако бывает и так, что скрестить
растения, относящиеся к двум разным видам или родам, удается, но полученные
от гибридизации семена не желают прорастать — сказывается несовместимость,
допустим, зародыша с эндоспермом. Это обычное явление при скрещивании
пшеницы и ржи (есть, однако, и другие факторы, препятствующие прорастанию).
В таких случаях с успехом прибегают к
отделению зародыша от эндосперма на ранних этапах развития зерновки и
помещению зародыша на искусственную питательную среду, состоящую из многих
компонентов.
При выращивании молодых эмбрионов добились зав
| | скачать работу |
Другие рефераты
|