Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Физикохимия проницаемости биологических мембран

сто бывает необходимым обеспечить перенос через мембрану молекул
против их электрохимического градиента.  Такой  процесс называется  активным
транспортом и осуществляется  белками-переносчиками,   деятельность  которых
требует  затрат   энергии.   Если  связать  белок-переносчик  с   источником
энергии, можно получить механизм, обеспечивающий активный транспорт  веществ
через мембрану. Одним  из  главных  источников  энергии  в  клетке  является
гидролиз  АТФ  до  АДФ  и  фосфата.  На  этом  явлении  основан  важный  для
жизнедеятельности клетки механизм  (Na  +  K)-насос.  Он  служит  прекрасным
примером активного транспорта ионов.  Концентрация K внутри клетки  в  10-20
раз выше,  чем снаружи.  Для  Na  картина  противоположная.  Такую   разницу
конценраций   обеспечивает  работа  (Na   +   K)-насоса,   который   активно
перекачивает Na из клетки, а K в клетку.  Известно,  что  на  работу  (Na  +
K)-насоса   тратится   почти   треть   всей    энергии    необходимой    для
жизнедеятельности    клетки.     Вышеуказанная     разность     концентраций
поддерживается со следующими целями:
    1) Регулировка объема клеток за счет осмотических эффектов.
    2) Вторичный транспорт веществ (будет рассмотрен ниже).
    Опытным путем было установлено, что:
а) Транспорт ионов Na и K тесно связан с гидролизом  АТФ  и не может
осуществляться без него.
    б) Na и АТФ должны находиться внутри клетки, а K снаружи.
    в) Вещество  уабаин  ингибирует  АТФазу только находясь вне клетки, где
он  конкурирует  за  участок  связывания  с  K.  (Na  +  K)-АТФаза   активно
транспортирует Na наружу а K  внутрь клетки. При  гидролизе  одной  молекулы
АТФ три иона Na выкачиваются из клетки а два иона K попадают в нее.
    1) Na связывается с белком.
    2)  Фосфорилирование  АТФазы  индуцирует  конформационные  изменения  в
белке,  в результате чего:
    3) Na переносится на внешнюю сторону мембраны и высвобождается.
    4) Связывание K на внешней поверхности.
    5) Дефосфорилирование.
    6) Высвобождение K и возврат белка в первоначальное состояние.
    По всей вероятности в (Na + K)-насосе есть три участка  связывания Na и
два участка связывания  K.   (Na  +  K)-насос  можно  заставить  работать  в
противоположном   направлении   и   синтезировать  АТФ.    Если    увеличить
концентрации  ионов  с  соответствующих  сторон  от  мембраны,   они   будут
проходить  через  нее   в   соответствии   со   своими    электрохимическими
градиентами,  а АТФ будет синтезироваться из ортофосфата  и  АДФ  с  помощью
(Na + K)-АТФазы.
    2.6. Если бы у клетки не существовало  систем  регуляции  осмотического
давления, то  концентрация растворенных  веществ  внутри  нее  оказалась  бы
больше их внешних концентраций. Тогда концентрация  воды в  клетке  была  бы
меньшей,  чем ее  концентрация  снаружи.  Вследствие  этого,  происходил  бы
постоянный приток воды в клетку и ее разрыв. К счастью,  животные  клетки  и
бактерии контролируют  осмотическое  давление  в  своих  клетках  с  помощью
активного выкачивания неорганических ионов таких как Na.  Поэтому  их  общая
концентрация внутри клетки ниже чем снаружи. Клетки растений  имеют  жесткие
стенки,  которые предохраняют их от набухания.  Многие  простейшие  избегают
разрыва от поступающей внутрь клетки воды с помощью специальных  механизмов,
 которые регулярно выбрасывают поступающую воду.
    2.7. Другим   важным   видом  активного  транспорта  является  активный
транспорт с помощью ионных  градиентов.   Такой  тип   проникновения   через
мембрану осуществляют некоторые транспортные белки,  работающие по  принципу
симпорта  или   антипорта   с  какими-нибудь    ионами,    электрохимический
градиент которых достаточно высок.  В животных  клетках  контранспортируемым
ионом  обычно  является  Na.  Его  электрохимический  градиент  обеспечивает
энергией активный транспорт других молекул.  Для примера  рассмотрим  работу
насоса, который перекачивает глюкозу. Насос  случайным  образом  осциллирует
между состояниями "пинг" и  "понг".  Na  связывается   с  белком   в   обоих
его  состояниях и при этом увеличивает сродство последнего к  глюкозе.   Вне
клетки присоединение  Na,   а   значит   и  глюкозы,   происходит  чаще  чем
внутри. Поэтому глюкоза перекачивается в клетку. Итак, наряду  с   пассивным
  транспортом   ионов  Na  происходит  симпорт  глюкозы.    Строго   говоря,
необходимая энергия для  работы этого  механизма  запасается в  ходе  работы
(Na + K)-насоса в виде электрохимического потенциала ионов Na.  У   бактерий
  и   растений  большинство   систем  активного   транспорта   такого   вида
используют  в  качестве  контранспортируемого  иона  ион  H.   К    примеру,
транспорт большей   части  сахаров  и  аминокислот  в  бактериальные  клетки
обусловлен градиентом H.
    2.8. Один из самых интересных способов активного  транспорта состоит  в
 том,  чтобы каким-либо образом удержать внутри  клетки  молекулу,  вошедшую
туда в соответствии со своим электрохимическим потенциалом.  Так,  некоторые
бактерии фосфорилируют молекулы отдельных сахаров,  в  результате  чего  они
заряжаются  и  не  могут  выйти  обратно.Такой  вид  транспорта   называется
векторным переносом групп.
    2.9. Для сквозного транспорта веществ через  клетку  существуют  особые
механизмы.  Например,  в плазматической мембране клеток  эпителия  кишечника
белки-переносчики     распределены     ассиметрично.    Благодаря     этому,
обеспечивается транспорт глюкозы  сквозь  клетку  во  внеклеточную  жидкость
откуда  она  поступает  в кровь.   Глюкоза  проникает  в  клетку  с  помощью
симпорта,  контранспортным ионом в котором является Na,  и  выходит  из  нее
путем  облегченной диффузии с помощью другого транспортного белка.
    2.10.  Рассмотрим   некоторые  дополнительные   функции   транспортеров
работающих по принципу антипорта.  Почти все клетки   позвоночных   имеют  в
составе своей плазматической мемраны  (Na  +  H)  переносчик-обменник.  Этот
механизм регулирует pH внутри клетки. Вывод ионов H  из  клетки  сопряжен  с
транспортировкой в нее ионов Na. При этом увеличивается значение  pH  внутри
клетки.   Такой  обменник  имеет  особый   регуляторный   участок,   который
активизирует его работу при уменьшении pH.  Наряду с этим , у многих  клеток
есть механизм,  обеспечивающий  обратный эффект.  Это (Cl  +  HCO)-обменник,
который уменьшает значение pH.
    2.11. Одним из самых  интересных  примеров  транспорта   веществ  через
биологические  мембраны является взаимодействие  гормонов  с  клеткой.   Как
известно, гормонами называют спецефические  химические  соединения,  которые
оказывают   значительное   влияние   на   процессы    обмена    веществ    и
функционирование органов.  В отличие от  ферментов или витаминов гормоны  не
изменяют  скорость  отдельных  реакций,  а  существенно  влияют   на   некие
фундаментальные процессы в организме,  которые  затем  сказываются на  самых
различных сторонах жизнедеятельности организма.
    Некоторые виды  гормонов  проникают  в клетку и регулируют в ней синтез
информационных  РНК.  Другие  гормоны,  называемые   пептидными    (инсулин,
гормон   роста)   взаимодействуют   со  специальными  мембранными   белками,
которые,  в  свою  очередь,  продуцируют  в  клетке  вещества,  влияющие  на
некоторые происходящие в ней процессы.
    2.12. Модель  возбудимой  мембраны  предполагает  регулируемый  перенос
ионов калия и натрия через мембрану. Однако, непосредственный  переход  иона
через липидный бислой весьма затруднен, поэтому плотность потока ионов  была
бы очень мала, если бы ион  проходил  непосредственно  через  липидную  фазу
мембраны. Это и  ряд  других  соображений  дали  основание  считать,  что  в
мембране должны быть некоторые  специальные  структуры  –  проводящие  ионы.
Такие структуры были найдены и названы  ионными  каналами.  Подобные  каналы
выделены   из   различных   объектов:   плазматической   мембраны    клеток,
постсинаптической мембраны  мышечных  клеток  и  других  объектов.  Известны
также ионные каналы, образованные антибиотиками.
    Основные свойства ионных каналов:
    1) селективность;
    2) независимость работы отдельных каналов;
    3) дискретный характер проводимости;
    4) зависимость параметров каналов от мембранного потенциала.
    Рассмотрим их по порядку.
    1. Селективностью  называют  способность  ионных  каналов  избирательно
пропускать ионы какого-либо одного типа.
    Еще в первых опытах на аксоне кальмара было обнаружено, что ионы натрия
и калия  по-разному  влияют  на  мембранный  потенциал.  Ионы  калия  меняют
потенциал покоя, а ионы натрия - потенциал действия.
    Измерения   показали,   что   ионные   каналы    обладают    абсолютной
селективностью по отношению к катионам (катион-селективные каналы),  либо  к
анионам (анион-селективные каналы). В то же время  через  катион-селективные
каналы способны проходить различные катионы различных химических  элементов,
но проводимость мембраны для неосновного иона, а значит  и  ток  через  нее,
будет существенно ниже, например, для натриевого канала калиевый  ток  через
него будет в 20 раз меньше. Способность ионного канала пропускать  различные
ионы  называется  относительной  селективностью  и   характеризуется   рядом
селективности - соотношением проводимостей канала для разных  ионов,  взятых
при одной концентрации.
    2. Независимость  работы  отдельных  каналов.  Прохождение  тока  через
отдельный ионный канал не зависит от того, идет ли ток через другие  каналы.
Например, калиевые каналы могут быть включены или выключены,  но  ток  через
натриевые каналы не меняется.  Влияние  каналов  друг  на  друга  происходит
опосредованно:  изменение  проницаемостей   каких-либо   каналов   (например
натриевых) меняет мембранный потенциал, а  уже  он  влияет  на  проводимости
прочих ионных каналов.
    3. Дискретный  характер  проводимос
1234
скачать работу

Физикохимия проницаемости биологических мембран

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ