Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Газы и тепловые машины



 Другие рефераты
Вязкость при продольном течении Газовые лазеры Галилео Галилей Гамма излучение

Реферат по физике на тему:



                              Тепловые машины.



                Докладчик:                     ************ ******* ********
        Преподаватель:                         ******* ******* *************


                                 Москва 1998
  План:

1. Закон идеального газа.
2. Первое начало термодинамики. Адиабатический процесс.
3. Второе начало термодинамики.
4. Принцип действия тепловых машин.
5. КПД тепловых двигателей и второе начало термодинамики.
6. Уравнение Ван-дер-Ваальса.



  Закон идеального газа.

  Экспериментальный:

  Основными параметрами газа являются температура, давление и объём.  Объем
газа существенно зависит от давления и температуры газа. Поэтому  необходимо
найти соотношение  между  объемом,  давлением  и  температурой  газа.  Такое
соотношение называется уравнением состояния.
  Экспериментально было обнаружено,  что  для  данного  количества  газа  в
хорошем приближении  выполняется  соотношение:  при  постоянной  температуре
объем газа обратно пропорционален приложенному к нему давлению (рис.1):
                            V~1/P , при T=const.

  Например, если давление, действующее на газ, увеличится вдвое,  то  объем
уменьшится до половины первоначального. Это соотношение известно  как  закон
Бойля (1627-1691)-Мариотта(1620-1684), его можно записать и так:
                                  PV=const.
  Это означает, что при изменении одной из величин, другая также изменится,
причем так, что их произведение останется постоянным.
  Зависимость объема от температуры (рис.2) была открыта  Ж.  Гей-Люссаком.
Он обнаружил, что при постоянном  давлении  объем  данного  количества  газа
прямо пропорционален температуре:
                             V~T , при Р=const.
  График   этой   зависимости   проходит   через   начало   координат    и,
соответственно, при 0К его объём станет равный нулю, что очевидно  не  имеет
физического смысла. Это привело  к  предположению,  что  -2730С  минимальная
температура, которую можно достичь.
  Третий газовый закон, известный как закон Шарля, названный в  честь  Жака
Шарля (1746-1823). Этот закон гласит: при постоянном  объеме  давление  газа
прямо пропорционально абсолютной температуре (рис.3):
                              Р~T, при V=const.
  Хорошо  известным  примером  действия  этого  закона  является  баллончик
аэрозоля,  который  взрывается  в  костре.  Это  происходит  из-за   резкого
повышения температуры при постоянном объеме.
  Эти три  закона  являются  экспериментальными,  хорошо  выполняющимися  в
реальных газах только до  тех  пор,  пока  давление  и  плотность  не  очень
велики, а температура не слишком  близка  к  температуре  конденсации  газа,
поэтому слово "закон" не очень подходит  к  этим  свойствам  газов,  но  оно
стало общепринятым.
  Газовые законы Бойля-Мариотта, Шарля и  Гей-Люссака  можно  объеденить  в
одно более  общее  соотношение  между  объёмом,  давлением  и  температурой,
которое справедливо для определенного количества газа:
                                    PV~T
  Это показывает, что при изменении одной из величин P, V или Т,  изменятся
и две другие величины.  Это  выражение  переходит  в  эти  три  закона,  при
принятии одной величины постоянной.
  Теперь следует учесть ещё одну величину, которую до сих  пор  мы  считали
постоянной - количество этого газа. Экспериментально подтверждено, что:  при
постоянных температуре и давлении замкнутый объём газа  увеличивается  прямо
пропорционально массе этого газа:
                                    PV~mT
  Эта зависимость связывает все основные величины газа. Если ввести  в  эту
пропорциональность    коэффициент   пропорциональности,   то   мы    получим
равенство. Однако опыты показывают, что  в  разных  газах  этот  коэффициент
разный, поэтому вместо массы m вводят количество вещества n (число молей).
  В результате получаем:
|PV=nRT                                                          |(1)  |

  , где n - число молей, а R - коэффициент пропорциональности.  Величина  R
называется универсальной  газовой  постоянной.  На  сегодняшний  день  самое
точное значение этой величины равно:
                         R=8,31441 ( 0,00026 Дж/Моль
  Равенство (1) называют уравнением состояния идеального газа  или  законом
идеального газа.

  Число Авогадро; закон идеального газа на молекулярном уровне:

  То, что постоянная R  имеет  одно  и  то  же  значение  для  всех  газов,
представляет собой великолепное отражение  простоты  природы.  Это  впервые,
хотя и в несколько другой форме, осознал итальянец  Амедео  Авогадро  (1776-
1856). Он опытным  путём  установил,  что  равные  объёмы  объемы  газа  при
одинаковых давлении и температуре содержат  одинаковое  число  молекул.  Во-
первых: из уравнения (1) видно, что  если  различные  газы  содержат  равное
число молей,  имеют  одинаковые  давления  и  температуры,  то  при  условии
постоянного R они занимают равные объёмы. Во-вторых: число молекул  в  одном
моле для всех газов одинаково, что непосредственно  следует  из  определения
моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.
  Число молекул в одном моле называется числом  Авогадро  NA.  В  настоящее
время установлено, что число Авогадро равно:
                     NA=(6,022045(0,000031)(10-23 моль-1
  Поскольку общее число молекул N газа равно числу молекул  в  одном  моле,
умноженному на число молей (N=nNA), закон идеального газа  можно  переписать
следующим образом:
                                PV=nRT=N/NART
  или
|PV=NkT                                                            |(2) |


  , где k называется постоянной Больцмана и имеет значение равное:
                   k= R/NA=(1,380662(0,000044) (10-23 Дж/К

  Первое начало термодинамики. Адиабатический процесс.

  Внутренняя энергия газа - это сумма кинетической и потенциальной  энергии
всех молекул этого  газа.  Очевидно,  что  внутренняя  энергия  газа  должна
увеличиваться  либо  за  счет  совершения  над  газом  работы,  либо   путем
сообщения ему некоторого количества теплоты. И наоборот, если газ  совершает
работу над внешними телами или тепловой поток направлен из газовой  системы,
то энергия этой системы должна уменьшаться.
  В результате опытов Джоуля (как и многих других) был сформулирован закон,
согласно которому изменение внутренней энергии ((U) замкнутой системы  можно
записать в следующем виде:
|((U)=Q- W                                                         |(3) |


  , где Q-количество теплоты, сообщенное системе,  а  W-работа  совершаемая
системой.
  Выражение (3) известно как первое начало термодинамики. Поскольку теплота
Q и работа W выражают  способы  передачи  энергии  в  систему  или  из  неё,
внутренняя энергия изменяется в соответствии с ними.  Таким  образом  первое
начало  термодинамики  является  попросту  формулировкой  закона  сохранения
энергии.
  Уравнение (3) применимо как к замкнутым системам, так и к  не  замкнутым,
если учесть изменение энергии вследствие  изменения  количества  вещества  в
данной системе.
  При переходе системы из одного состояния в  другое  (1  в  2)  количество
теплоты Q, сообщённое системе, и работа W, совершённая системой, зависят  от
конкретного процесса (или  пути),  в  котором  участвовала  система.  И  для
разных процессов эти величины  различны,  даже  если  начальные  и  конечные
состояния  системы  одинаковы.  Однако  эксперименты   показали,   что   при
одинаковых начальном и конечном состояниях разность Q-W одинакова  для  всех
процессов, переводящих систему из одного состояния в другое.
  Адиабатическим называется процесс, при котором от системы не отбирается и
не  сообщается  энергии.  Такой  процесс  может  происходить,  если  система
изолирована или  протекает  столь  быстро,  что  теплообмен  практически  не
происходит. Примером процесса, очень близкого  к  адиабатическому,  является
расширение газов в двигателях внутреннего сгорания.
  При медленном адиабатическом расширении из уравнения (3) следует (так как
Q=0 (по определению адиабатического процесса)):
|((U)=- W                                                        |(4)   |

  т.е.   внутренняя  энергия  системы  убывает,   и   поэтому   температура
понижается.
  Соответственно при адиабатическом сжатии внутренняя энергия повышается и,
следовательно, температура повышается. Например  в  двигателе  Дизеля  объем
быстро уменьшается, и поэтому  температура  увеличивается,  а  впрыскиваемая
смесь из-за высокой температуры воспламеняется.


  Второе начало термодинамики.

  Мы можем  представить  себе  множество  процессов  подтверждающих  первое
начало термодинамики.  Также  можно  представить  много  процессов,  которые
согласуются  с  законом  сохранения  энергии,  но  при  этом  почему-то   не
встречающихся в природе. Например:  рассмотрим,  что  происходит  с  камнем,
после броска. По  мере  его  падения  его  начальная  потенциальная  энергия
переходит в кинетическую.  Когда  же  камень  соприкасается  с  землёй,  его
кинетическая энергия переходит во внутреннюю энергию камня и  земли.  Однако
никто из нас никогда не наблюдал, что бы внутренняя энергия вдруг перешла  в
кинетическую и камень самопроизвольно взлетел. Этот процесс  не  приводит  к
нарушению  первого  начала  термодинамики.  Для  того   что   бы   объяснить
отсутствие обратимости аналогичных процессов, во второй  половине  XIX  века
ученые пришли к формулировке второго начала термодинамики.
  Одна из его формулировок, принадлежащая Р. Ю.  Э.  Клаузису  (1822-1888),
гласит, что теплота в естественных условиях переходит  от  горячего  тела  к
холодному, в то время как от холодного к горячему теплота сама  по  себе  не
переходит. Эта формулировка относится к определенному процессу и  не  вполне
ясно, каким образом её отнести к иным процессам.  Более  общая  формулиров
123
скачать работу


 Другие рефераты
Джефферсон - выдающийся деятель мировой истории
Типология Индивидуальности
Лекции по курсу Периферийные устройства компьютеров
Востановление независимости Армении в IX-XI веках


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ