Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Множество. Алгебра множеств.



 Другие рефераты
Дифференциальные уравнения Дифференцированные уравнения Теория булевых функций. Булева алгебра. Определение и способ задания булевых функций

Введем обозначения.

R – множество действительных чисел.
X e R – элемент X принадлежит множеству R.

Равные множества – множества, состоящие из одинаковых элементов.

A = B – множество А равно множеству B.

0 – пустое множество.

A<= C – Множество А является подмножеством множества С.

Если А не равно С и А <= C, то А < С. (строго).
Если A <= C и C <= А, то А = С.

Пустое множество 0 является подмножеством любого множества.

Существуют конечные и бесконечные множества. Пусть n – число элементов
данного множества А. Это число называется мощностью данного множества.

У множества рациональных чисел мощность является счетной (т.е. все элементы
можно пронумеровать).
У множества иррациональных чисел мощность – континиум. Обозначается (С).



            Основное правило комбинаторики (показано на примере)



Пусть имеется палочка, разделенная на 3 части. Первую ее часть можно
раскрасить n способами, вторую – m, третью – k. Всего способов раскраски
палочки – n*m*k.


                          Аналогично с множествами

U = {a1,a2… an-1, an}
Пусть U = {a1, a2, a3}
Выпишем множество всех подмножеств множества U.

P(U) = {0, a1, a2, a3, a1a2, a1a3, a2a3, a1a2a3}.

Мощность множества U  равна 3, а мощность P(U) равна 8.

Методом математической индукции доказывается, что при произвольной мощности
n множества U, мощность множества P(U) равна 2n.


                           Операции над множествами

1. Объединение множеств (A U B). Элемент, принадлежащий полученному
   множеству, принадлежит множеству А ИЛИ множеству В.
2. Пересечение множеств (A n B). Элемент, принадлежащий полученному
   множеству, принадлежит множеству А И множеству В.
3. Дополнение множества А. (С = А ) – не А. Все элементы, принадлежащие
   универсальному множеству, не принадлежат множеству А.

                     Свойства операций над множествами.
1. A U B = B U A – коммутативность
.   A n B = B n A
2. (A U B) U C = A U (B U C),  A n (B n C) = (A n B) n C – ассоциативность.
3. (A U B) n C = (A n C) u (B n C), (AnB) U C = (A U C) n (B U C) –
   дистрибутивность.
4. Поглощение A U A = A,  A n A = A.
5. Существование универсальных границ.
   А U 0 = A
   A n 0 = 0
   A u U = U
   A n U = A
6. Двойное дополнение
      A = A
7. A U A = U
A n A = 0
8. Законы двойственности или закон Де – Моргана
(AUB) = A n B
(AnB)  = A U B
скачать работу


 Другие рефераты
Мотивация и стимулирование работников
Жинақтаушы зейнетақы қорымен есеп айырысудың есебі
ҚР жоғары мемлекеттік билік органдарының конституциялық-құқықтық мәртебесі
Интернеттің іздеу технологиялары


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ