Оптические квантовые генераторы
я редко и
главным образом тогда, котаа необходимо получить генерацию с произвольной
поляризацией излучения.
Газоразрядная трубка наполняется рабочей смесью гелия и неона с общим
давлением ^-10^ Па. Перед напуском рабочей смеси производят тщательную
откачку с интенсивным нагреванием трубки. Для устранения оставшихся после
откачки и выделяющихся в процессе работы газов перед отпайкой в трубку
вводят геттер обыч но барий), активно поглощающий кислород, водород, азот и
другие газы, но не вступающий в соединение с гелием и неоном.
[pic]
Исследования показывают, что усиление активной среды в гелий-неоновом
ОКГ невелико и составляет несколько процентов на метр (например, для
перехода 3s о -2рц с Л, = 0,6328 стоя оно не превышает А% на метр, для
перехода 2Sn -2рц с Д= I, 152 мкм - 12%). Поэтому в резонаторах гелий-
неонового ОКГ приходится использовать зеркала с коэффициентом отражения,
близким к единице и отличающимся от нее на доли и единицы процентов. При-
меняются главным образом зеркала с интерференционными покрытиями. Малый
коэффициент усиления активной среды налагает жесткие требования на
точность юстировки зеркал резонатора. Так, в случае резонатора с плоскими
зеркалами непараллельность их всего в несколько угловых секунд существенно
сказывается на выходной мощности. Значительно меньше зависят от юстировки
резо-иаторы со сферическими зеркалами. Обычно поворот сферических зеркал
от оптимального положения в пределах нескольких угловых минут мало влияет
на величину выходной мощности ОКГ. Поэтому в болышнстве газовых ОКГ
используют резонаторы со сферическими зеркалами.
Для возбуждения газовой смеси используют либо разряд на постоянном
токе, либо высокочастотный разряд. В первом случае в газоразрядную трубку,
как показано на рис.80, вводят электроды - катод Щ, анод ('?). Напряжение
питания составляет в зависимости от длины разрядного промежутка
величину от нескольких сотен вольт до двух-трех киловольт,ток разряда -
несколько десятков миллиампер, Высокочастотный разряд возбуждается
радиочастотным генератором с мощностью от десятков до сотен ватт,
напряжение от которого подводится к внешним кольцевым электродам,
накладываемым на трубку.
Мощность генерации ОКГ зависит от парциальных давлений гелия и неона,
размеров газоразрядной трубки, от тока (мощности) разряда. На рис.81
представлена зависимость мощности генерации р от давления гелия при
различных давлениях неона.Мощность генерации растет с увеличением
парциального давления гелия и неона, достигая максимума при общем
давлении,, близком к 100 Па, и затем уменьшается. Рост мощности с давлением
гелия объясняется увеличением концентрации его атомов, находящихся в мета-
стабильном состоянии, что благодаря процессу резонансной передачи энергии
атомам неона, описываемому формулой (123), ведет к росту инверсии
населенностей рабочей среды и, следовательно, мощности генерации. При
больших давлениях газовой смеси время свободного пробега электронов
снижается настолько, что они не успевают достаточно ускориться в
электрическом поле и приобрести необходимую энергию. Поэтому эффективность
возбуждения ато-мов уменьшается. Мощность генерации существенно зависит от
соотношения парциальных давлений гелия и неона в газовой смеси. Как
показывают исследования, для генерации на переходе 3$^ --— 2/Dn с /I =
0,6328 мкм оптимальное соотношение для неона и • гелия равно I : 5, а для
перехода 25^—2^ с Л-= 1,15 мкм оно равно I : 10 при общем давлении смеси
около 100 Па.
Важным вопросом получения максимальной выходной мощности является выбор
оптимального диаметра газоразрядной трубки. С одной стороны, увеличение
диаметра трубки, а значит, и объема активной среды должно приводить к
росту мощности генерации. С другой - чрезмерное увеличение диаметра трубки
ведет к уменьшению инверсии населенностей рабочей пары уровней. Это связано
с тем, что в процессе генерации опустошение нижнего рабочего уровня 2рь
происходит посредством каскадных переходов на ме-тастабильный уровень Is ,
с которого атомы возвращаются в основное состояние, главным образом под
влиянием соударений со стенками трубки. Чем больше радиус трубки, тем
больше время диффузии атомов неона к стенкам, а значит, время их жизни
в состоянии is . В результате на уровне is скашиваются атомы, откуда они в
результате электронного возбуждения переходят в состояние 2р и Зр ,
уменьиая инверсию населенностей. Экспериментально установлено, что для
трубок длиной I м оптимальный диаметр составляет 7-8 мм. Для трубок меньшей
длины он получается соответственно меньше.
[pic]
На рис.82 приведена типичная для гелий-неонового ОКГ зависимость
выходной мощности
^вых от тока РварВД® I (мощности разряда). Характер этой
зависимости полностью определяется механизмом возбуждения гелий-неоновой
смеси. С увеличением разрядного тока возрастает концентрация электронов в
плазме и увеличиваются населенности всех возбужденных состояний атомов
гелия и неона, особенно 2s-и 35-состояний, благодаря процессу, описываемому
формулами
(123). Поэтому мощность генерации с увеличением тока растет. По мере
дальнейшего возрастания тока рост инверсии из-за интенсивного заселения
нижних рабочих
уровней 2р и Зр в результате процесса ступенчатого возбуждения через
метаотабилъный уровень Is, описываемого формулами
(124), начинает замедляться. При больших разрядных токах (> 100 мА)
концентрация атомов неона в долгоживущем метаста-бильном состоянии is
становится настолько высокой, что ступенчатое заселение уровней 2р и Зр
приводит к уменьшению инверсной заселенности рабочей пары уровней, и
мощность генерации падает.
Оптимальная величина тока разряда для разных ОКГ находится в диапазоне
20*80 мА. Исследования показывают, что в оптимальном режиме удельная
мощность (мощность с единицы длины разрядной трубки) генерации составляет
30 мВг/м для перехода 3Sn-- 2pq ( Л- = 0,6328 мкм), 50 мВт/м для перехода
25g -2рц (Л, = = 1,152 мкм) и 100 мВт/м для перехода За^ - Зрц ( Л/
=3,394мий).
Коэффициент полезного действия гелий-неонового ОКГ составляет доли
процента. Столь низкий КПД объясняется малой квантовой эффективностью
рабочих переходов атомов неона и несовершенством процесса возбуждения их.
Квантовая эффективность рабочего перехода - это отношение энергии
излучаемого фотона к энергии, которая сообщается частице для возбуждения
ее до верхнего рабочего уровня. Иными словами, квантовая эффективность
показывает , какая доля энергии,затраченная на возбуждение частиц,
переходит в энергию генерации. Очевидно, что квантовая эффективность
рабочего перехода определяет теоретическое предельное значение КПД ОКГ. Для
атомэв неона энергия верхнего рабочего уровня составляет 20 аВ, а энергия
фотона генерации с Д=0,6328 мкм равна 2 эВ. Поэтому квантовая эффективность
т?д„ « 10?. Таким образом, в когерентное излучение может быть преобразовано
лишь 10% общей энергии, сообщенной атому.
С другой стороны, в процессе возбуждения атома Afe до верхнего рабочего
уровня эффективно могут участвовать только те электроны, энергия которыг
превышает 20 эВ. Так как в гелий-неоновой плазме наиболее аероятная энергия
электронов составляет 6+8 аВ, то для возбуждения верхнего рабочего уровня
используется лишь небольшая часть энергии, затрачиваемой на поддержание
газового разряда. Поатому КПД гелий-неонового ОКГ значительно меньше
квантовпй эффективности и составляет доли процента .
Спектр излучения гелий-неонового ОКГ состоит из отдельных . линий,
соответствующих продольным к поперечным типам колебаний используемого
открытого резонатора. Общая ширина спектра генерации определяется шириной
линии усиления активной среды ОКГ. Линия усиления активной среды гелий-
неонового ОКГ определяется эффектом Доплера, и ее ширина Д-^у растет с
увеличением интенсивности накачки. Для перехода с Л/ = 0,6328 мкм она
достигает 2000 МГц, для ^ = 1,152 мкм Ai)^» 1000 МГц, для Л = = 3,394 мкм
Дг?,, йг 400 МГц. При длине резонатора I м в ОКГ может генерироваться на ^
= 0,6328 мкм до 10+12, на Л.=1,]5мкм - до 5-6 продольных типов колебаний.
Применяя специальные методы селекции типов колебаний (см. § 5 гл.17),
можно получить генерацию в гелий-неоновом ОКГ на одной частоте.
Аргоновый ОКГ. В отличие от атомных ОКГ, к которым относится рассмотренный
гелий-неоновый ОКГ и в которых используются переходы между возбужденными
состояниями атомов, в ионных ОКГ рабочий переход соответствует
возбужденным уровням ионов. Ионный ОКГ в настоящее время - один из наиболее
мощных газовых ОКГ, излучение которых лежит в видимой области спектра. Это
связано с особенностями структуры энергетических уровней ионов и механизмом
создания инверсии населенностей.
Инверсия населен— ностей в ионных ОКГ осуществляется газовым разрядом. Так
как рабочими частицами в них являются ионы, то газовая плазма разряда
должна быть высокоионизированной. Поэтому в ионных ОКГ используется дуговой
разряд, отличающийся повышенной степенью ионизации.
Характерным представителем ионных ОКГ служит аргоновый ионный ОКГ,
наиболее изученный и разработанный в настоящее время. Давно налажен их
промышленный выпуск.
Рассмотрим механизм возбуждения аргоновых ионных ОКГ. На рис. 83
приведена упрощенная диаграмма нижних состояний ионов аргона.В
основном.состоянии атом
Др имеет электронную ко
| | скачать работу |
Оптические квантовые генераторы |