Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Получение феррита бария из отходов производства машиностроительных предприятий

ости  твёрдых
веществ, в результате чего эти реакции мало чувствительны к  отравлению.  За
счёт постоянного  возобновления  контактов  между  твёрдофазными  реагентами
диффузионные  затруднения,  связанные  с   тормозным   действием   продуктов
реакции, устраняются, а реакция протекает постоянно в кинетической области.
      Режим  обжига,  включает  в  себя  скорость  нагрева,  температуру   и
длительность изотермической выдержки, условия  охлаждения,  а  также  состав
газовой  фазы,  используемой  на  различных  этапах  обжига.  Температура  и
длительность  изотермической  выдержки  при  обжиге  ферритов   определяются
экспериментально. При этом  для  каждой  марки  ферритов  определяется  свой
температурно-временной режим,  обеспечивающий  оптимум  их  электромагнитных
параметров.
     Спекание  под  давлением  (горячее  прессование)  представляет  широкие
возможности для регулирования среднего размера зерна и  плотности  ферритов.
В общем случае  увеличение  давления  всестороннего  сжатия  интенсифицирует
рост зёрен, однако благодаря низкой температуре и длительности цикла  обычно
получают весьма мелкое зерно и высокую плотность материала.
      Управление  гранулометрическим  составом   шихты   (метод   затравок).
Экспериментальные  и  теоретические  исследования   показывают   возможность
регулирования роста зёрен введением специально  изготовленных  искусственных
центров рекристаллизации. Сущность этого метода заключается  во  введении  в
предварительно  ферритизированную  шихту  определённого   количества   более
крупных частиц того же химического состава. Эти  частицы,  являясь  центрами
кристаллизации спекаемой массы, в конечном счёте  будут  определять  средний
размер зерна, дисперсию, плотность изделий.

              1.3. Применение ферритовых магнитных материалов.

     Область применения магнитного материала зависит, прежде всего, от его
характеристик: магнитно-твёрдые или магнитно-мягкие..
     Ферриты нашли широкое применение в качестве магнитных наполнителей  для
полимерных композиционных материалов. В том  числе  магнитно-мягкие  порошки
никель-цинковых,  марганец-цинковых,  цинковых;   магнитно-твёрдые   порошки
гексаферрита бария, стронция. Основным  преимуществом  полимерных  магнитов,
по  сравнению  с  металлическими  или  керамическими,  является  их   лёгкая
формуемость, стабильность размеров и низкая стоимость.
     Ферриты широко используются в промышленности  бытовых  электроприборов,
производстве  игрушек,   дверных   амортизаторов,   автоматических   дверных
переключателей, таймеров.важное  применение  магнитные  эластомеры  нашли  в
медицине в качестве  магнитотерапевтических  средств,  а  также  нетоксичных
магнитных элементов при биопротезировании и создании  искуственного  сердца.
В качестве  магнитного  материала  в  таких  элементах  используется  феррит
бария. Ферромагнитные порошки  также  нашли  применение  в  дефектоскопии  в
качестве  обнаружителя  магнитного  поля   дефекта.   Магнитная   порошковая
дефектоскопия  относится   к   неразрушающим   методам   контроля   качества
материалов.  Магнитно-твёрдые  ферриты,  в  частности   гексаферрит   бария,
используются  в  аппаратах  с  магнитно-вихревым   током.   Такие   аппараты
предназначены  для  измельчения  различных  материалов  с  высокой  степенью
однофазности, эмульгирования и другого. Также  ферриты,  полученные  как  из
чистых компонентов так  и  из  отходов  производства,  могут  применяться  в
качестве адсорбентов для очистки сточных вод.
                      2. Методы эксперимента и анализа.

                    2.1. Физико-химические характеристики
                             сырья и материалов.

                            2.1.1. Гальваношламы.
     Электрохимические методы находят широкое применение в промышленности:
машиностроении, приборостроении, радиотехнике, лёгкой промышленности. С их
помощью наносят защитные, декоративные покрытия, придают поверхности
металлов необходимые свойства, изготавливают детали сложной формы и
осуществляют многие другие технологические операции.
      Большинство  гальванических  операций  сопровождается  промывкой,   во
многом определяющей качество покрытия. Именно  промывка  является  одним  из
двух главных источников загрязнения природной среды токсичными  компонентами
гальванических производств. Второй главный  источник  связан  с  ликвидацией
или частичной регенерацией отработанных технологических растворов.
     При работе гальванических цехов образуются сточные воды, содержащие,  в
зависимости от качества очистки, в той или иной концентрации ионные  примеси
катионов (меди, никеля, цинка, кадмия,  хрома,  железа,  кобальта  и  других
тяжёлых металлов) и их гидрооксиды (в виде суспензии и  коллоидных  частиц);
анионов (хлоридов, сульфатов, фторидов, цианидов и  других);  ПАВ  и  другие
токсичные вещества. Все эти соединения содержатся в  отходах  обезвреживания
сточных вод – шламах, которые обычно захороняются  (в  лучшем  случае  –  на
специальных полигонах) и являются источниками эмиссии указанных  токсинов  в
почвенные воды. Большинство токсинов не подвергается  в  природе  каким-либо
изменениям, устраняющим их вредное воздействие.
     Известно, что  загрязнение  природной  среды  ионами  тяжелых  металлов
представляет  большую  опасность  для   биосферы.   Помимо   непосредственно
токсичного действия на живые организмы, тяжелые металлы  имеют  тенденцию  к
накапливанию в пищевых цепочках, что усиливает их  опасность  для  человека.
При  попадании  в  организм  человека  тяжелые  металлы  вызывают  различные
заболевания: от функциональных  нарушений  центральной  нервной  системы  до
тяжелых заболеваний желудочно-кишечного тракта, печени и почек.
     Таким образом, гальванические производства являются одним  из  основных
поставщиков тяжелых металлов в окружающую среду, что способствует  нарушению
экологического равновесия в природе.
                   2.1.2. Карбонат бария (ВаСО3) – отход.
     Белый порошок углекислого бария образуется  при  эксплуатации  щелочных
батарей  железнодорожного  подвижного  состава.  Содержащийся   в   щелочных
батареях электролит КОН (гидрооксид калия) поглощает из  воздуха  углекислый
газ,  в  результате  чего  образуются  углекислые  соли.  После  регенерации
щелочного  электролита  аккумуляторных  батарей,  из-за   снижения   емкости
аккумулятора,   образуется   электролит   и   осадок    углекислого    бария
(ВаСО3),которые отделяются друг от друга.  Полученный  электролит  и  осадок
углекислого бария используют в дальнейшем лабораторном эксперименте.
     ВаСО3 широко используется в производстве  керамики  для  предупреждения
выцветания глиняных масс, является  важнейшим  химикатом  в  промышленности;
используется в производстве телевизионного стекла.
     ВаСО3 используется в производстве магнитных ферритов,  что  и  взято  в
данной работе за основу эксперементов
               2.1.3. Хлорид бария (ВаСl2)- отход термического
                                производства.
     В металлургии для изменения внутреннего строения сплава и получения
нужных свойств используется термическая обработка. Одним из видов
термической обработки является закалка. Ее проводят для придания детали
более высокой твердости.
     Закаливание проводят в специальных ваннах закаливания. Ванны  заполняют
расплавом соли, в которую погружают деталь. В  зависимости  от  того,  какие
свойства необходимо придать детали, он может подвергаться  низко-,  средне-,
или  высокотемпературной  обработке.  Постепенно  при  обработке  деталей  в
закалочных ваннах образуется пена и накапливается  осадок,  который  снижает
эффективность закаливания. Осадок  из  ванн  удаляется  и  накапливается  на
предприятиях  в  больших  количествах,  так   как   способа   утилизации   и
дальнейшего использования на данный момент не существует.
     Данный отход в основном содержит хлорид бария  –  соединение  2  класса
опасности, он обладает токсичным действием.  Малые  дозы  ВаCL2  стимулирует
деятельность костного мозга; большие дозы вызываю  дегенеративные  изменения
печени.
               2.1.4. Порошкообразные отходы ОАО «Северсталь».
      Данные  отходы  собираются  с   помощью   специального   зонта   после
пропускания воздуха со взвешенными веществами  через  электрофильтр.  Другой
из отходов образуется в результате мокрой очистки воздуха  на  производстве;
сушится при 1000є C в специальных печах.
     В данной работе  отходы  очистки  воздуха  от  пыли  и  мелкодисперсных
частиц тяжелых металлов  используются  как  источник  железа  для  получения
феррита бария.
                      2.1.5. Химически чистые реактивы.
                         HCL   ГОСТ 3118-77;   Н2О2
                        BaCO3   ГОСТ 4158-80;   BaCL2
                          F2O3   H2O   (ТУ 4179-88)

                         2.2. Методики эксперимента.
         2.2.1. Подготовка отхода карбоната бария для эксперимента.
     Отход карбоната бария отмывается от щелочи путем многократной
промывки. Промывные воды собираются в емкость с целью определения
концентрации в образовавшихся промывных водах щелочи. Отмывка осадка
ведется до нейтральной реакции.
     Осадок сушится в течении 12 часов в печи при температуре 105єС
          2.2.2. подготовка отхода хлорида бария для эксперимента.
     Отход хлорида бария замачивается в большом количестве воды на
несколько дней. Получившаяся смесь разделяется фильтрацией на растворимую и
нерастворимую части. Нерастворимая часть термического отхода хлорида бария
высушивается в печи при температуре 105єС. растворимая часть отхода
используется в ходе эксперементов получения феррита бария.
     Концентрация BaCl2 в растворимой  части  отхода  составляет  67,96  г/л
(методика 2.3.2.).
            2.2.3. получение феррита бария механическим смешением
                 с последующей ферритизац
12345
скачать работу

Получение феррита бария из отходов производства машиностроительных предприятий

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ