Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Система философии математики Аристотеля

ричинно   -   следственном
воплощении.    Переходу    к    миру  одушевлённых  существ,  мы   видим   у
Аристотеля и здесь на первом плане четырёхпринципную структуру.
Аристотель различает  три типа    души    -    растительную,
ощущающую(животную)   и  разумную.  Разумная  душа   тоже   имеет   и   свой
эйдос,  и  свою материю,   и   причинно  -  целевую  направленность.   Эйдос
живого тела есть принцип  его  жизни,   т.е.   его  душа.   А  всякая   душа
движущая  телом,  тоже имеет свой  собственный  эйдос,   который  Аристотель
называет Умом. Так что душа, по Аристотелю, есть  не  более,   чем   энергия
Ума.  А  Ум  есть эйдос  всех  эйдосов.  По  Аристотелю  Ум  и  есть  высшая
степень бытия. Этот   Ум   ,   будучи  наивысшей  степенью  бытья  в  целом,
является у Аристотеля,  если сказать кратко,  предельным  понятием   вообще.
     Он  -  "эйдос эйдосов". Ум  взятый сам по себе,  уже  ровно  ничем  ни
связан и зависит только  от  самого   себя.   В   этом   смысле   он   вечно
неподвижен.
Аристотель  считает,  что  Ум,  несмотря  на всю свободу  от  умственной
материи, содержит  свою  собственную, чисто    умственную    материю,    без
которой  он  не  был  бы художественным произведением. Никакие философы   до
     Аристотеля не  допускали  в   Уме  существование  материи.  Никто  так
остро и принципиально  не   противопоставлял   материю   и   Ум,   как   это
сделал  Аристотель.
Аристотель  создал  три  концепции Ума - перводвигателя.  Первая концепция
-  чисто  платоническая. Она сводится  к  тому,  что Ум является наивысшим
и окончательным бытиём.  Ум - есть не что иное,  как  царство  богов  -
идей высших,  или над космических,  низших, или звёздных. Во второй
концепции ,  Ум у Аристотеля есть мышление, и мышление самого же  себя,
т.е.  "мышление  мышления". Ум содержит в себе свою собственную умственную
материю,  которая даёт ему возможность быть вечной красотой (т.к.  красота
есть идеальное совпадение идеи  и  материи).   Третья   концепция
Аристотеля   сильно отличается  от  Платоновской.  У  Платона  космосом
управляет Мировая  душа.  У  Аристотеля  же  это   -   Ум,  который   движет
решительно  всем  ,  и  поэтому  он   есть   жизнь   как   вечная  энергия."
Если Ум  по  Аристотелю  ,  есть  всеобщая  цель,  и поэтому всё  его  любит
,  то сам он ,  будучи  целью  не  то,  что  вообще  никого  не  любит,   но
поскольку всё  вообще  любит  его самого, Ум, несомненно, тем более   должен
     любить  самого  себя."         Аристотель говорил: "Платон  мне  друг,
но  истина  дороже"  И  вся  жизнь   Аристотеля   состояла   в   бесконечном
стремлении найти,   проанализировать,   схватить   истину  ,  докопаться  до
смысла  окружающего  мира.  В   своих   зоологических  трактатах  Аристотель
устанавливает  и  характеризует  более  400  видов животных.
Он  описал  158  различных  греческих  и негреческих законодательств. Вся V
   книга    его    основного    трактата "Метафизика" специально посвящена
философской терминологии,  и каждый  термин у него выступает в 5 - 6
значениях.  Аристотель был сильным человеком.  И когда оказалось,  что
деваться  уже некуда, и с ним могут расправиться как до этого с Сократом
он, как  можно  предполагать,  принял   яд. Так   кончилась   жизнь
Аристотеля. И всё же его искания, вся его жизнь свидетельствуют о небывалом
мужестве великого человека, для которого даже сама смерть стала актом
мудрости и невозмутимого спокойствия.
     К. Маркс назвал Аристотеля (384-322 гг. до н.э.) "величайшим философом
древности".  Основные вопросы философии, логики, психологии,
естествознания, техники,  политики, этики и эстетики, поставленные в науке
Древней Греции,  получили у Аристотеля полное  и  всестороннее освещение. В
математике он, по-видимому,  не проводил конкретных исследований, однако
важнейшие стороны математического  познания  были подвергнуты им глубокому
философскому анализу,  послужившему методологической основой деятельности
многих поколений математиков.     Ко времени  Аристотеля  теоретическая
математика прошла значительный путь и достигла высокого уровня развития.
Продолжая традицию философского анализа  математического познания,
Аристотель поставил вопрос о необходимости упорядочивания самого знания о
способах усвоения науки, о целенаправленной разработке искусства ведения
познавательной деятельности,  включающего два основных раздела:
"образованность" и "научное знание дела". Среди известных сочинений
Аристотелянет специально посвященных изложению методологических проблем
математики. Но по отдельным высказываниям, по использованию математического
материала в качестве иллюстраций общих методологических положений можно
составить представление о том, каков был его идеал построения системы
математических знаний.     Исходным этапом познавательной деятельности,
согласно Аристотелю, является обучение,  которое "основано на (некотором)
уже  ранееимеющемся знании... Как математические науки, так и каждое из
прочихискусств приобретается (именно) таким способом".  Для отделения
знания от  незнания Аристотель предлагает проанализировать "все те мнения,
которые по-своему высказывали в этой области некоторые мыслители" и
обдумать возникшие при этом затруднения. Анализ следует проводить с целью
выяснения четырех вопросов:  "что (вещь)  есть,  почему(она) есть, есть ли
(она) и что (она) есть".     Основным принципом, определяющим всю структуру
"научного знания дела", является  принцип  сведения всего к началам и
воспроизведения всего из начал.  Универсальным процессом производства
знаний из  начал, согласно Аристотелю, выступает доказательство.
"Доказательством же я называю силлогизм,  - пишет он, - который дает
знания". Изложению теории  доказательного знания полностью посвящен
"Органон" Аристотеля. Основные положения этой теории можно сгруппировать в
разделы, каждый  из которых раскрывает одну из трех основных сторон
математики как доказывающей науки:  "то, относительно чего доказывается,то,
что  доказывается и то,  на основании чего доказывается".  Таким образом,
Аристотель дифференцированно подходил к объекту, предмету и средствам
доказательства.     Существование математических объектов признавалось
задолго  до Аристотеля, однако пифагорейцы,  например, предполагали, что
они находятся в чувственных вещах,  платоники же, наоборот, считали их
существующими отдельно. Согласно Аристотелю:
1. В чувственных вещах математические  объекты  не  существуют, так как
"находиться в том же самом месте два тела не в состоянии";
2. "Невозможно и то,  чтобы такие реальности существовали  обособленно".
 Аристотель считал предметом математики "количественную  определенность и
непрерывность".  В его трактовке "количеством называется то, что может быть
разделено на составные  части,  каждая  из  которых ...является чем-то
одним, данным налицо. То или другое количество есть множество,  если его
можно счесть,  это величина,  если  его можно измерить".  Множеством при
этом называется то,  "что в возможности (потенциально) делится на части не
непрерывные,  величиною  то, что  делится на части непрерывные".
Прежде чем дать определение непрерывности, Аристотель рассматривает
понятие  бесконечного,  так как "оно относится к категории количества" и
проявляется прежде всего в непрерывном.  "Что бесконечное существует,
уверенность в  этом возникает у  исследователей  из пяти оснований:  из
времени (ибо оно бесконечно); из разделения величин..; далее, только таким
образом не иссякнут возникновение и уничтожение, если будет бесконечное,
откуда берется возникающее.  Далее, из того, что конечное всегда граничит с
чем-нибудь, так  как необходимо,  чтобы одно всегда граничило с другим. Но
больше всего на том основании,  что мышление не останавливается: и  число
кажется бесконечным,  и математические величины".
Существует ли бесконечное как отдельная сущность  или  оно  является
акциденцией величины или множества?  Аристотель принимает второй вариант,
так как "если бесконечное не есть ни величина,  ни множество, а само
является сущностью..., то оно будет неделимо, так как делимое будет или
величиной,  или множеством.  Если же оно не делимо, оно не бесконечно в
смысле непроходимого до конца". Невозможность математического бесконечного
как неделимого следует из того,  что  математический объект - отвлечение от
физического тела, а "актуально неделимое бесконечное тело не существует".
Число "как что-то отдельное и в то же  время бесконечное" не существует,
ведь "...если возможно пересчитать числимое,  то будет возможность пройти
до конца и  бесконечное". Таким  образом,  бесконечность здесь в потенции
существует, актуально же - нет.
     Опираясь на изложенное выше понимание бесконечного,  Аристотель
определяет непрерывность и прерывность.  Так, "непрерывное есть само по
себе нечто смежное.
Смежное есть то, что, следуя за другим, касается его". Число как типично
прерывное (дискретное) образование формируется соединением дискретных,
далее неделимых элементов - единиц.
Геометрическим аналогом единицы является точка;  при этом соединение точек
не может образовать линию, так как "точкам, из которых было бы составлено
непрерывное,  необходимо или быть непрерывными,  или  касаться друг друга".
 Но непрерывными они не будут:  "ведь края точек не образуют чего-нибудь
единого,  так как у неделимого нет ни  края, ни другой  части".  Точки не
могут и касаться друг друга,  поскольку касаются "все предметы или как
целое целого, или своими частями, или как целое части. Но так как неделимое
не имеет частей, им необходимо касаться целиком, но касающееся целиком не
образует непрерывного".
     Невозмож
123
скачать работу

Система философии математики Аристотеля

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ