Коррозия и защита металлов
Другие рефераты
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 2
ХИМИЧЕСКАЯ КОРРОЗИЯ 3
ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ ПОД ДЕЙСТВИЕМ ВНУТРЕННИХ МАКРО- И
МИКРОГАЛЬВАНИЧЕСКИХ ПАР 7
ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ, ВОЗНИКАЮЩАЯ ПОД ДЕЙСТВИЕМ ВНЕШНЕЙ РАЗНОСТИ
ПОТЕНЦИАЛОВ 9
3АЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ 10
ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ ВНЕШНИМ ПОТЕНЦИАЛОМ 15
список литературы 16
КОРРОЗИЯ И ЗАЩИТА МЕТАЛЛОВ. ХИМИЧЕСКАЯ СТОЙКОСТЬ МАТЕРИАЛОВ
ВВЕДЕНИЕ
Получение металлов из их природных соединений всегда сопровождается
значительной затратой энергии. Исключение составляют только металлы,
встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть.
Энергия, затраченная на получение металлов, накапливается в них как
свободная энергия Гиббса и делает их химически активными веществами,
переходящими в результате взаимодействия с окружающей средой в состояние
положительно заряженных ионов:
Меn++ nе > Ме0 ([pic]G>0); Ме0 – ne > Ме n+ ([pic]G
<0).
металлургия
коррозия
Самопроизвольно протекающий процесс разрушения металлов в результате
взаимодействия с окружающей средой, происходящий с выделением энергии и
рассеиванием вешества (рюст энтропии), называется коррозией. Коррозионные
процессы протекают ннеобратимо в соответствии со вторым началом
термодинамики.
Медленное выделение тепловой энергии почти без повышения температуры или
электрической энергии с ничтожно малыми разностями потенциалов не дает
возможности использовать выделяющуюся энергию — происходит рассеивание
энергии (рост тепловой части энтропии). Продукты коррозии, как правило,
рассеиваются в процессе эксплуатации металлических конструкций, что ведет к
росту энтропии (концентрационная часть энтропии). Необратимые коррозионные
процессы наносят большой вред народному хозяйству.
Создан Международный институт коррозии и защиты металлов, координирующий
работы в этой области, ведущиеся во всех странах. Подсчитано, что около 20%
ежегодной выплавки металлов расходуется в коррозионных процессах. Большой
вред приносит коррозия в машиностроении, так как из-за коррозионного
разрушения какой-нибудь одной детали может выйти из строя машина, стоящая
нередко десятки и сотни тысяч рублей. Коррозия снижает точность показаний
приборов и стабильность их работы во времени. Незначительная коррозия
электрического контакта приводит к отказу при его включении. Меры борьбы с
коррозионными процессами являются актуальной задачей современной техники.
Виды коррозионных разрушений. Изменение поверхности металла в результате
коррозионных процессов может быть различным в зависимости от свойств
металла и коррозионной среды. На их развитие очень сильно влияет
механическая напряженность металла.
Наиболее опасной является местная коррозия, которая при малой общей
коррозии в отдельных местах может создать резкую концентрацию механических
напряжений, в свою очередь содействующих дальнейшему разрушрнию металла.
Выявляемые микроскопическим исследованием коррозионные разрушения все
опасны и особенно интеркристаллитная коррозия, ослабляющая связь между
металлическими зернми, и транскристаллитняя коррозия, возникающая под
действием, механических напряжений и приводящая к развитию трещин. Наименее
опасна селективная коррозия — результат травления стали при сохранении
карбидных зерен (цементит, мартенсит) или потеря цинка из латуней.
Типы коррозионных процессов. Часто одни и те же типы коррозионных
разрушений металла могут быть вызваны разными процессами коррозии.
Коррозионные процессы бывает трудно отнести только к какому-либо
определенному типу, так как они нередко происходят одновременно
(атмосферная коррозия). По природе гетерогенных процессов взаимодействия
окружающей среды с металлами эти процессы можно разделить на два основных
типа.
Химическая коррозия, развивающаяся в отсутствие электролитов. Она
протекает главным образом при температурах, исключающих возможность
образования насыщенного пара воды, — высокотемпературная или газовая
коррозия. Этот же вид коррозии может возникать и в неводных органических
средах (галогенозамещенные, тиосоединения и т. д.).
Электрохимическая коррозия, идущая в электролитной среде под действием
внутренних микро- или макрогальванических пар или внешней разности
потенциалов.
Оба типа коррозионных процессов определяются термодинамически изменением
свободной энергии Гиббса:
[pic]G0 = – RT ln K = – [pic] ?0nF (1)
Процессы высокотемпературной химической коррозии определяются константой
равновесия обратимых гетерогенных реакций, и для их исследования мы
используем первую часть равенства (1).
Для исследования процессов электрохимической коррозии необходимо
рассматривать выражение ?G0, содержащее разность потенциалов и величину
заряда, перенесенного растворяющимся веществом, т. е. электрическую работу.
Кроме термодинамической вероятности процесса необходимо рассматривать
кинетику процесса, так как она определяет долговечность и надежность машин
и конструкций, работающих в коррозионных средах.
Существенно влияет на коррозионные процессы уровень внешних или
внутренних (остаточных) напряжений и их распределение в металле изделия. На
коррозию сталей и других металлов, особенно в контакте с грунтом (землей),
могут влиять продукты жизнедеятельности микроорганизмов, значительно
ускоряющие процессы коррозии.
ХИМИЧЕСКАЯ КОРРОЗИЯ
Химической коррозии подвержены детали и узлы машин, работающих при
высоких температурах, — двигатели поршневого и турбинного типа, ракетные
двигатели и т. п. Химическое сродство большинства металлов к кислороду при
высоких температурах почти неограниченно, так как оксиды всех технически
важных металлов способны растворяться в металлах и уходить из равновесной
системы:
2Ме(т) + O2(г) 2МеО(т);
МеО(т) [МеО] (р-р)
В этих условиях окисление всегда возможно, но наряду с растворением
оксида появляется и оксидный слой на поверхности металла, который может
тормозить процесс окисления.
Скорость окисления металла зависит от скорости собственно химической
реакции и скорости диффузии окислителя через пленку, а поэтому защитное
действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная
способность. Сплошность пленки, образующейся на поверхности металла, можно
оценить по отношению объема образовавшегося оксида или другого какого-либо
соединения к объему израсходованного на образование этого оксида металла
(фактор Пиллинга—Бэдвордса). Рассмотрим реакцию окисления металла
xMe + уO > MexOy
объем полученного оксида:
[pic]
где [pic]— молекулярная масса;
[pic] - плотность;
объем израсходованного металла:
[pic]
где [pic] — атомная масса;
[pic] — плотность;
отсюда
[pic] (2)
Коэффициент ? (фактор Пиллинга — Бэдвордса) у разных металлов имеет
разные значения (табл. 1).
Таблица 1. Значение коэффициента ? для некоторых металлов
|Металл |Оксид |? |Металл |Оксид |? |
|Mg |MgO |0.79 |Zn |ZnO |1.58 |
|Pb |PbO |1.15 |Zr |ZrO2 |1.60 |
|Cd |CdO |1.27 |Be |BeO |1.67 |
|Al |Al2O2 |1.31 |Cu |Cu2O |1.67 |
|Sn |SnO2 |1.33 |Cu |CuO |1.74 |
|Ni |NiO |1.52 |Ti |Ti2O3 |1.76 |
|Nb |NbO |1.57 |Cr |Cr2O3 |2.02 |
|Nb |Nb2O3 |2.81 | | | |
Металлы, у которых ?<1, не могут создавать сплошные оксидные слои, и
через несплошности в слое (трещины) кислород свободно проникает к
поверхности металла.
Сплошные и устойчивые оксидные слои образуются при ? = 1,2—1,6, но при
больших значениях ? пленки получаются несплошные, легко отделяющиеся от
поверхности металла (железная окалина) в результате возникающих внутренних
напряжений.
Фактор Пиллинга — Бэдвордса дает очень приближенную оценку, так как
состав оксидных слоев имеет большую широту области гомогенности, что
отражается и на плотности оксида. Так, например, для хрома ? = 2,02 (по
чистым фазам), но пленка оксида, образующегося на нем, весьма устойчива к
действию окружающей среды. Толщина оксидной пленки на поверхности металла
меняется в зависимости от времени. При низких температурах толщина пленки
изменяется по логарифмическому закону и асимптотически приближается к
некоторой постоянной величине:
? = ?0 (1 – e-?St) (3)
где ? — толщина пленки; ?0 —постоянная, предельная величина; k —
константа скорости гетерогенной реакции; S — поверхность раздела (1 см2), t
— время. При t > ? ? > ?0. Уравнение (3) есть кинетическое уравнение для
гетерогенной реакции, в которой площадь контакта не изменяется со временем.
В рассмотренном случае лимитирующим фактором является скорость реакции, а
не диффузия.
При больших температурах четко выявляется параболический закон роста, т.
е. затухание диффузии с ростом толщины слоя. В этом случае лимитирующим
процессом является уже диффузия, но не скорость химической реакции, а
условия диффузии можно определить соотношением
? grad C = const (4)
где ? — толщина оксидного слоя; grad C — градиент концентрации кислорода
по толщине пленки. После соответствующих преобразований уравнения
| | скачать работу |
Другие рефераты
|