Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Коррозия меди в 5М изопропанольных растворах НС1

ургическими и гидрометаллургическими методами. | | |Схема 1. [[ii]] | |[pic] | |- во влажном воздухе ( Сu2O | | | |- во влажном воздухе в присутствии СО2, Н2S, SO2 ( основные карбонаты и | | | |сульфат меди | | |[pic] |- с NH4OH ( [Cu(NH3)4](OH)2 | | | |- c KCN + O2 + H2O ( K[Cu(CN)2] или К3[Cu(CN)4] | | | |- c HNO3 ( Cu(NO3)2 . n H2O | |[pic] | | | | | |- на воздухе ( Cu2O и СuO | | | |- c F2, C12, Br2, J2 ( CuF2, CuC12, CuBr2, CuJ2 | | | |- c S, Se, Te ( CuS, CuSe, CuTe | | | |- с Н2S ( CuS | | |[pic] |- P, As, Sb, C, Si ( Cu3P, Cu3P2, Cu3As2, Cu3As, Cu5As2, Cu2Sb, Cu3Sb, | | | |карбид и силициды | | | |- с концентрированной НС1 на воздухе СuС12 | | | |- с концентрированно Н2SO4 ( CuSO4 . H2O | | | |- c NH3 ( Cu3N | | | |- c NO2 или NO ( Cu2O | Пирометаллургический метод используется при переработке руд с большим содержанием меди. Он основан на том, что оставшиеся после обогащения FeS2 и FeS окисляются кислородом легче, чем сульфиды меди CuS и Cu2S. При сплавлении концентратов полиметаллических сульфидных руд с флюсами в шахтных печах медь с определенной частью железа образует медный пек Cu2S.FeS, остальное железо. Цинк и другие металлы переходят в шлак в виде силикатов: мышьяк, сурьма, фосфор и частично сера превращаются в летучие оксиды. Гидрометаллургический метод применяется при переработке бедных медных руд и содержащих медь отходов других металлургических производств. С помощью некоторых химических реагентов (Н2SO4, NH4OH, NaCN, Fe2(SO4)) плохо растворимые соединения меди переводят в легко растворимые, а затем различными способами (простым выщелачиванием растворов, электролизом или с помощью ионнообменных смол) извлекают их из раствора. Получение чистого металла из сырого путем удаления примесей является целью металлургических процессов - афинажа и рафинировния. Методы афинажа различны у разных металлов, т.к. они могут основываться на окислении и восстановлении примесей, на ликвации (примеси с более высокой температурой плавления остаются нерастворенными), на агрегации (примеси с более низкой температурой плавления выделяются селективным отверждением), на адсорбции (примеси адсорбируются без участия химической реакции). Сырая медь, полученная металлургически, содержит 93-98,5% меди и загрязнена кислородом, железом, мышьяком, сурьмой, висмутом, кобальтом, оловом, серой и, возможно, серебром, золотом, платиной. Свинец, сера, селен, теллур, висмут и кислород - примеси, вредные для меди, а мышьяк, фосфор, никель, железо, марганец и кремний улучшают ее механические свойства. Для очистки сырой меди от примесей ее подвергают рафинированию, которое осуществляется двумя способами - пирометаллургическим и элекрохимическим. При пирометаллургическом окислении сырую медь расплавляют в отражательной печи, в которую вдувают сжатый воздух. В результате происходит частичное окисление таких элементов как сера, железо, никель, цинк, кобальт, олово, свинец, мышьяк, сурьма и связывание диоксида кремния с превращением в шлак. При нагревании расплава оксид серы (IV) полностью улетучивается, частично удаляются As2O3 и Sb2O3, а большая часть сурьмы остается в меди. Медь, рафинированная пирометаллургически содержит примеси Cu2O, Bi, Sn, иногда Ag, Au, Pt и платиновые металлы. Из такой меди отливают аноды, для дальнейшего получения электролитической меди. Электролизерами для электролитической очистки меди служат бетонные чаны со стенами, обложенными свинцовыми пластинами. В них наливают электролит - раствор сульфата меди с серной кислотой и добавкой сульфата натрия. В электролизер помещают аноды из пирометаллургически полученной меди и катоды из чистой меди. При пропускании тока на катоде осаждается чистая медь, а аноды растворяются в процессе окисления. Неметаллические примеси и металлы, менее активные, чем медь (Ag, Au, Pt, платиновые металлы), находящиеся на анодах выпадают в виде шлама на дно электролизера. При электролизе водного раствора сульфата меди на катоде осаждается чистая медь, а на аноде выделяется кислород. CuSO4 ( Cu2+ + SO42- (8) H2O (( H+ + OH- (9) На катоде: Cu2+ + 2e ( Cu0 На аноде: 2OН- - 2e ( 1/2O2 + H2O 2. Коррозионное и электрохимическое поведение меди. В атмосферных условиях в отличие от многих других металлов, медь не подвергается коррозии, так как на ее поверхности образуется тонкий ровный слой (пленка) продуктов коррозии, не содержащая никаких агрессивных соединений, способных при каких-либо условиях разрушать металл. Коррозия меди в атмосферных условиях - процесс самопроизвольно затухающий, так как продукты коррозии защищают поверхность металла от внешней среды. В воде и нейтральных растворах солей медь обладает достаточной устойчивостью, которая заметно снижается при доступе кислорода и окислителей. В морской воде, аэрируемой при малой скорости движения, медь характеризуется небольшим равномерным растворением (порядка 0,05 мм/год). При высоких скоростях течения жидкости, а также ударах струи скорость коррозии меди сильно повышается [[iii]]. Имеются данные о влиянии pH среды на депассивацию меди [[iv]] в хлоридсодержащих боратных буферных растворах. Установлено, что всем исследованном интервале рН при анодной поляризации медь переходит в пассивное состояние. При увеличении рН боратного буфера стационарный потенциал, потенциал пассивации и плотность тока пассивации уменьшается, т.к. изменяется структура, толщина и состав оксидной пленки на меди. В среде, близкой к нейтральной пассивирующая пленка состоит из оксидов Cu (I) и Cu (II), а в щелочной среде - в основном из оксида меди (I) и очень тонкой пленки оксида меди (II). В последнем случае толщина пленки меньше, а пористость больше. При увеличении рН в хлоридсодержащих боратных буферах потенциал питтиногообразования снижается (разблагораживается), что связано как с изменением происходящими в оксидной пленке, так и с тем, что начальные стадии депассивации меди протекают через образование смешанных гидроксокомплексов. При постоянном значении рН потенциал питтингообразования не зависит от концентрации NaC1. Предложена схема механизма начальных стадий инициирования питтингообразования меди в хлоридсодержащих боратных растворах, согласно которой лимитирующей стадией является диссоциация гидроксида Cu(ОН)2, а нуклеофильное замещение пассивирующего лиганда в поверхностном комплексе анионом-активатором протекает по диссоциативному механизму. В [[v]] приведены данные по коррозионному поведению меди М1 в 3% растворе хлорида натрия в сравнении с естественной морской водой, совокупность которых позволила авторам сделать вывод, что основным анодным процессом при коррозии меди в 3 % растворе NaC1 и морской воде является ее окисление в закись с последующим химическим растворением последней. Контролирующей стадией является отвод ионных форм меди (Сu+, CuCl2-, CuCl32-) в электролит. В хлоридных растворах с рН=0,5, содержащих ионы двухвалентной меди, по данным [[vi]] при катодной поляризации наблюдается компонента скорости растворения, независимая от потенциала за счет процесса репропорционирования: Cu + Cu2+ ( 2Cu+ (10) Медь весьма склонна к комплексообразованию. Например, в нейтральных хлоридных средах эффективный заряд переходящих в раствор ионов (mэфф) меди равен 1±0,01 [[vii]]. Предложен следующий стадийный механизм растворения меди c двумя возможными маршрутами ионизации : а) Сu + nCl- ® CuCl[pic] + е (11) б) Cu ® Cu+ + e (12) _________________________ Cu+ + nCl- ® CuCl[pic] Широкое применение в различных отраслях химической промышленности нашло химическое и электрохимическое травление меди. В медно-аммиачных травильных растворах, содержащих NH3 и NH4C1 [[viii]], установлена следующая последовательность формирования пассивирующих слоев с ростом потенциала: СuC12, Cu2O, CuO (при определенных условиях), CuC12.3Cu(OH)2 и CuC12 . 2NH4C1.H2O, либо их смесь. Различными электрохимическими и рентгенографическими методами было показано, что интенсивное вращение электрода удаляет лишь рыхлую часть продуктов реакции, оставляя пассивный слой. В любых условиях растворение идет через пассивную пленку. Изучение травления в растворах FeC12 показало, что химическое растворение меди протекает наряду с электрохимическим, основными продуктами которых являются CuC1 и Сu2О. Общая скорость ионизации металла определяется пассивированием поверхности меди малорастворимыми продуктами. Пассивирование для железо-хлоридных растворов тем глубже, чем позже оно наступает. Причиной является уплотнение слоя СuС1 в результате уменьшения количества дефектов в структуре, а также тот факт, что по сравнению с CuC12 в железо-хлоридных растворах той же концентрации количество свободных С1- ионов, не входящих в комплексы, больше, и, следовательно, лучше условия для пассивирования. Установлено, что образующийся при травлении меди пассивирующий слой CuС1 обладает полупроводниковыми свойствами и оказывает существенное влияние на протекание анодного растворения металла. При малых концентрациях FeC13 главную роль играет толщина поверхностного слоя, а при высоких концентрациях FeC13 - диффузия ионов Fe3+ в твердую фазу. Уменьшение экранирования поверхности электрода происходит при интенсивном перемешивании, снижение концентрации Fe3+ - ионов и повышение концентрации С1- -ионов, которые, по-видимому, облегчают растворение осадка CuC1тв, переводя в комплексные соединения типа CuC1[pic], CuC1[pic], Cu2C1[pic]. В средах на основе CuC12 и FeC13 растворение происходит по реакциям: Cu + CuC12 ( 2CuC1 (13) Cu + FeC13 ( CuC1 + FeC12 (14), протекающим по электрохимическому механизму, т.е., например, как совокупность реакций: Сu + C1- (CuC1 + e (15) CuC12 + (C1- + CuC1 (16) Первично образующаяся пленка СuС1, наблюдаемая визуально на поверхности меди, при ее травлении растворяется с образованием комплексных ионов CuC1[pic], CuC1[pic], которые в свою очередь могут окисляться кислородом воздуха до меди (II). Электрохимическое поведение меди комплексов Сu (I) в расплаве эквимолярной смеси NaF-KC1 [[ix]]. Установлено, что процесс разряда комплексов Сu (I) до металла протекает обратимо. Определены коэффицие
12345
скачать работу

Коррозия меди в 5М изопропанольных растворах НС1

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ