Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Коррозия меди в 5М изопропанольных растворах НС1

нты диффузии Сu (I) и условные стандартные потенциалы ( Сu+ /Cu и ( Сu2+/Cu+. Показано, что при наличии большого избытка анионов фтора к меди (I) в расплаве происходит стабилизация двухвалентного состояния меди, а разряд комплексов Cu (II) протекает в одну двухэлектронную реакцию. В отсутствие же большого избытка F - образующиеся хлоридно-фторидные комплексы восстанавливаются через две одноэлектронные стадии. При изучении электролиза растворов трехводного нитрата меди Сu(NO3)2.3H2O в диметилсульфоксиде (ДМСО) с медными анодами [[x]] было обращено внимание на чрезвычайно высокий анодный выход по току в расчете на ионы меди (II). Влияние плотности тока (Х1) и температуры (Х2) на анодный выход по току (ВТА) изучали методом планирования эксперимента (Бокса- Уильсона). Концентрацию соли в растворе 0,1М сохраняли постоянной. В качестве основного уровня были приняты плотность тока 6 мА/см2 и температура 55 0С. На основании проведенных экспериментов получено параметрическое уравнение (17). Отметим прежде всего высокое значение первого коэффициента уравнения регрессии: ВТА = 188,58 - 0,32Х1 + 0,80Х2 - 0,33Х1Х2 Судя по значениям других коэффициентов, большее влияние на исследуемый процесс оказывает температура. Величина выхода по току, рассчитываемая по (17), будет иметь разумные значения, если анодное окисление меди в диметилсульфоксидном растворе описывать уравнением Сu - e ( Cu+ (18) Возможно, этому благоприятствует способность молекул ДМСО адсорбироваться преимущественно в области положительных зарядов поверхности металла и прочно сольватировать ионы меди (I), взаимодействуя с молекулами воды, вносимой в электролит в составе соли, по реакции: Cu+ + H2O ( CuOH + H+ (19), 2Cu+ + H2O ( Cu2O + 2H+ (20), в результате чего образуются в растворе ярко окрашенные взвеси гидроксида желтого цвета и оксида красного цвета, хорошо наблюдаемые в анодном пространстве визуально. Известны публикации по изучению анодного растворения меди в ацетонитриле [[xi]]. Температурно-кинетическим методом и методом вращающегося дискового электрода установлено, что при содержании в растворе 20 объемных процентов воды процесс анодного растворения меди в ацетонитрильных растворах Сu(NO3)2 лимитируется подводом окислителя в зону реакции. С увеличением концентрации воды процесс переходит в область смешанной кинетики и наблюдается уменьшение скорости травления вследствие изменения лимитирующих стадий сопряженных реакций растворения меди. Это связано с тем, что по сравнению с водными растворами, ионы Сu+ в ацетонитриле обладают более высокой энергией сольватации, что обусловливает их стабилизацию. Увеличение содержания воды приводит к разрушению сольватов Cu+ с ацетонитрилом, дестабилизации ионов Сu+, в результате чего процесс травления осложняется. Коррозия меди в метанольном, н-пропанольном и водно-метанольном растворах Н2SO4, насыщенных кислородом, исследована в [[xii]]. Показано, что растворение протекает по каталитическому механизму так же, как и в водном растворе, при котором кислород восстанавливается в химической реакции ионами Cu+, а медь растворяется за счет сопряженных реакций. Опыты проводились с медью, осажденной на платине, при перемешивании раствора, с концентрацией кислоты (Н2SO4) 0,5 моль/л при t=25 0C. Судя по экспериментальным данным, предельный катодный ток по кислороду (iпред) превышает ту же величину в воздухе приблизительно в 5 раз, т. е. катодный ток по кислороду практически линейно зависит от концентрации О2. Увеличение перемешивания не влияет на iкорр , но увеличивает iпред по О2, следовательно, тафелевский участок является кинетическим, а участок предельного тока - диффузионный. Лимитирующей стадией восстановления О2, по мнению авторов, является присоединение первого электрона : О2 + е ® О2- (21), за которым следует ассоциация О2- + Н+ ® НО2 (22), Авторами [10] предложен следующий механизм коррозии меди в метанольной сернокислой среде: Сu+ + O2 ® Cu2+ + O2- (23) Cu ® Cu+ + e (24) Cu2+ + e ® Cu+ (25) и далее: HO2 + Cu+ ® Cu2+ + HO2- (26) НO2- + H+ ® H2O2 (27) Н2О2 + Сu+ ® Сu2+ + ОН- + ОН (28) ОН + Сu+ ® Cu2+ + OH- (29) OH- + H+ ® H2O (30) Подтверждением протекания химической реакции наряду с электрохимическим механизмом является тот факт, что измеренная радиометрически эффективная валентность меди, переходящей в раствор, равна 1. Достаточно подробно изучено электрохимическое и коррозионное поведение меди в кислых спиртовых хлоридных средах, где комплесообразование меди особенно заметно [13-17]. В метанольных растворах хлороводорода исследована [[xiii]] скорость коррозии определялась на неподвижном и вращающемся дисковом электродах по данным химического анализа коррозионной среды на медь посредством трилонометрического титрования в присутствии мурексида. Природа катодного процесса при коррозии меди определяется концентрацией кислоты и воды. В условно безводных растворах СНС1 = 10-2-10-1 моль/л растворение меди протекает с кислородной деполяризацией. На это указывает наличие участка предельного тока по кислороду на катодной поляризационной кривой, величина которого в пределах ошибки эксперимента не зависит от СНС1. Повышение содержания НС1 в 10 раз приводит к появлению водородной деполяризации, чего не наблюдается в водных растворах. Возможность параллельного протекания водородной поляризации в метаноле, по мнению авторов [13] связана со снижением перенапряжения водорода на меди и разблагораживанием металла в спирте (по сравнению с водными растворами). Введение воды приводит к снижению iпред. При содержании 10 мас.% Н2О за счет сдвига равновесия вправо СН3+ + Н2О ( Н3О+ + СН3ОН (31) носителями кислотных свойств являются протоны в форме ионов гидроксония. Одновременно повышается перенапряжение водорода и коррозия протекает с кислородной деполяризацией. По данным кулонометрических измерений медь переходит в раствор с эффективной валентностью (Zэф), близкой к 1 независимо от величины ионной силы раствора, скорости вращения диска (() и потенциала электрода. Это подтверждается и сопоставлением кинетики анодного процесса по поляризационным кривым и химическому анализу раствора. Введение двухзарядных ионов меди в виде СuC12 снижает Zэф до 0,6-0,8. Одновременно существенно возрастает ток саморастворения металла и величина предельного тока. Увеличивается равновесный потенциал, разряд ионов водорода становится невозможным, одновременно появляется дополнительная катодная реакция восстановления Сu2+ до ионов Cu+ (12), т.к. однозарядные ионы в хлоридных метанольных растворах, видимо, значительно стабильнее двухзарядных. Скорость коррозии меди понижается с увеличением содержания воды. Хлороводород оказывает обратное действие. Величины скорости коррозии в 10- 20 раз меньше соответствующих предельных токов катодных поляризационных кривых. Следовательно, растворение определяется кинетическими факторами и не связано с транспортными ограничениями подвода деполяризатора. Скорость коррозии меди значительно возрастает с увеличением концентрации хлорной меди, с порядком близким к 1. Одновременно предельный ток также растет с порядком 0,9. Однако iкорр ( iпред, т.е в присутствии Сu2+ скорость коррозии меди больше таковой, рассчитанной при протекании ее на предельном токе. Следовательно, по мнению авторов [13], имеет место параллельная реакция, видимо, неэлектрохимической природы - реакция репропорционорования (10). Последнее удовлетворительно объясняет и меньшую величину эффективной валентности в присутствии CuC12. В 1М условно безводных растворах НС1 скорость коррозии преимущественно определяется кинетикой катодной реакции, на что указывает резкое возрастание скорости саморастворения при введении дополнительного катодного деполяризатора. Скорость коррозии меди в этиленгликолевых растворах НС1 [[xiv]] также в значительной мере обусловлена химической реакцией репропорционирования (10). Ионизация меди протекает до однозарядных ионов, а наличие Cu2+ в растворе связано с окислением ионов Сu+ растворенным кислородом. В работе [14] изучена скорость коррозии меди в этиленгликолевых растворах НС1 как функция концентрации воды (0,4-10 мас.%), хлороводорода (0,1-3,0 моль/л) и хлорной меди (10-2-10-1 моль/л). Исследования проведены в кислородной атмосфере при комнатной температуре на неподвижном электроде из меди марки М1. Скорость коррозии после двухчасовых испытаний определялась посредством анализа среды. Медь корродирует в исследуемых средах с кислородной деполяризацией, что непосредственно следует из характера катодных поляризационных кривых. Величины iпред в условно безводных этиленгликолевых растворах (0,1-1,0 моль/л) составляет 20(10 мкА/см2 и равна 95(5 мкА/см2 для 1М водных сред. Его изменение при введении 2 и 10 мас.% Н2О находится в пределах ошибки эксперимента. В 1М водном растворе НС1 скорость коррозии, пересчитанная на электрохимические единицы (iобщ) в 3 раза больше предельного тока, а , следовательно, химический процесс репропорционирования играет значительную роль. Однако, наличие добавок ионов Cu2+ сказывается иначе, чем в спирте. По мере введения СuС12 разница между iобщ и iпред уменьшается и, а затем они становятся одинаковыми. Это указывает на то, что растворении меди в 1М водном ратворе в присутствии Cu2+>10-2 моль/л практически полностью определяется электрохимической коррозией, катодная реакция которой (12) протекает на предельном токе и лимитирует процесс в целом. Причины этого легко понять, если учесть, что введение 5.10-2 моль/л ионов Cu2+ повышает величину предельного тока в у.б. этиленгликоле и воде соответственно до 100 и 2500 мкА/см2. В воде относительный вклад реакции репропорционирования становится пренебрежительно мал. Скорость коррозии меди увеличивается с ростом концентрации НС1. Опыты показали, что порядок анодной ионизации по ионам водорода и хлора равен 2. Величина ((1gK/( lgCHC1)Ci составляет 0,15-0,20, что указывает на отсутствие влияния кинетики анодной реакции на скорость коррозии. Наличие (( lgK/( lgCHC1)Ci ( 0 при одновременном ((lgiпред/(lgCHC1)Ci= 0, видимо, связано, с ускор
12345
скачать работу

Коррозия меди в 5М изопропанольных растворах НС1

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ