Лазерные средства отображения информации
Другие рефераты
“Лазерные средства отображения информации”
Лазерные методы индикации.
Практическая осуществимость лазеров была впервые показана в 1960 г. После этого развитие лазерной техники происходило рекордными темпами.
В настоящее время существует еще много проблем, связанных с при-менением лазеров в области индикации, включая проблемы, касающиеся суммарной яркости, сканирования, модуляции и срока службы. Тем не менее лазер имеет много достоинств при рассмотрении его как индикаторного уст-ройства. В их число входят высокая яркость луча, малый размер пятна и воз-можность работы в реальном масштабе времени.
Первые продемонстрированные лазеры были импульсного типа. В ка-честве основного источника света в них использовался рубин, а необходимая мощность оптической накачки вырабатывалась лампой - вспышкой. После этого были разработаны газовые лазеры непрерывного излучения и полупро-водниковые лазеры. Существующий уровень техники позволяет использо-вать любой из основных лазерных материалов как в режиме непрерывных колебаний, так и в импульсном режиме. Мощность накачки может либо вы-рабатываться электрически, либо, что более часто, подводится от внешнего источника света. Однако получаемые к.п.д. еще низки: порядка нескольких процентов у импульсных лазеров и примерно 0,1% у лазеров непрерывного излучения.
Основное лазерное действие поясняется выражением “Light Amplification by Stimulated Emission of Radiation” (усиление света посредст-вом индуцированного излучения), из начальных букв слов которого был об-разован термин “лазер”. При разнесении двух параллельных зеркал на рас-стояние, кратное длине волны испускаемого света, свет отражается обоими зеркалами и возвращается в фазе, стимулируя дальнейшее излучение. Свето-вое излучение возникает в результате переходов электронов из возбужденно-го состояния в состояние с меньшей энергией. Для создания возбужденных электронов должен использоваться внешний источник энергии (обычно оп-тической). Этот источник энергии переводит электроны в возбужденное со-стояние, благодаря чему они могут излучать световую вспышку при возвра-щение в свое нормальное состояние. Процесс повышения энергетических уровней этих электронов называется накачкой.
Поскольку на пути между зеркалами укладывается целое число длин волн, в лазере создаются колебания, соответствующие очень узким спек-тральным линиям. Иногда генерируется множество частот, которым соответ-ствуют длины волн, укладывающиеся целое число раз на длине основного пути. Еще одним важным свойством лазера является когерентный характер его излучения. Так как свет генерируется синфазно, ширина луча ограничи-вается дифракией.
Развертывающее устройство с бегущим лучом.
Предлагалось использовать лазер в развертывающем устройстве с бегущим лучом для освещения визуального объекта с целью последующего преобразования изображения в видеосигнал с помощью фотоумножителя. Помимо трудностей, связанных со сканированием, нужно отметить, что сис-тема может работать только на небольших расстояниях. Преобразование изображения в видеосигнал на очень больших расстояниях, таких, как в ра-диолокации, потребовало бы гораздо больший уровень мощности, чем дос-тижимый в настоящее время.
Лазерный индикатор с большим экраном.
Лазер часто предлагалось использовать для получения управляемого светового потока в проекционной индикации. Схема метода представлена на рис. 1. Лазер должен быть снабжен источником энергии для отклонения и модулировании луча. Экран может быть либо активным, либо пассивным. В активном экране применяется такой же принцип, как в электролюминес-центном усилителе света, с целью получения более высоких яркостей, чем при использовании только лазера.
Величина отклонения является функцией количества разрешаемых элементов и ширины луча лазера, которая может составлять от нескольких угловых секунд до одной угловой минуты. Большая ширина луча приводит к уменьшению необходимого расстояния между проекционным объективом и экраном при тех же самых размерах экрана и разрешающей способности, но требует большего угла отклонения. Существующие лазеры дают возмож-ность построить систему с разрешением 1000 линий и углом отклонения 16 и менее. При различных исследованиях методов отклонения лазерного луча получено от 256 до 1000 разрешаемых элементов и в горизонтальном и в вертикальных направлениях. К основным методам отклонения относятся: изменение с помощью ультразвука градиента показателя преломления, обес-печивающее отклонение на 5 ; сканирование с использованием электронно - оптической призмы и титаната бария, обеспечивающее отклонение на 1 ; использование аномальной дисперсии, обеспечивающей отклонение на 10 ; сканирование с использованием пьезоэлектрического элемента для отклоне-ния меньше чем на 1 .
Ограниченное количество применимых методов затрудняет осуществ-ление отклонения в лазерных индикаторах. Возникает две проблемы, связан-ные с ограниченными углами отклонения и малым размером пятна. Если требуемый угол отклонения мал (1 ), то приемлемой ширине экрана соответ-ствует большое расстояние между экраном и проектором. При отклонении на 1 это расстояние должно быть равно 120 м при ширине экрана 210 см. При большом угле отклонения (20 ) требуемое расстояние между экраном и про-ектором уменьшается до более реального значения 6м, но встают проблемы, связанные с размером пятна и отклонением. Ширина луча постоянна у любо-го данного лазера. Поэтому с увеличением угла отклонения увеличивается количество разрешаемых элементов. Это, в свою очередь, требует повыше-ния скорости сканирования (развертки), чтобы предотвращать ухудшение качества изображения. Например, если размер пятна в системе позволяет по-лучить разрешение 4000 линий, а используется только 500 строк развертки, то изображение получится разделенным на плоскости, имеющие значитель-ное разрешение. Ширина луча типичного лазера равна 10 угловым секундам, что обеспечивает разрешение 7200 элементов при угле отклонения 20 .
Яркость экрана В в нитах может быть вычислена с помощью выраже-ния:
В = РКG/ПА, (1)
где Р - выходная мощность лазера, вт; К - эффективность преобразова-ния энергии источника, лм/вт; G - усиление экрана; А - площадь эрана, м . В индикаторе должен использоваться лазер непрерывного излучения. Такие лазеры в настоящее время имеют выходную мощность порядка 1вт. В случае экрана размером 4,645 м , К = 500лм/вт, G = 3, ожидаемая яркость равна 102,9 нт. Однако современные лазеры изучают в красной области спектра со значительно меньшей эффективностью преобразования энергии.
В литературе описаны и другие методы построения лазерных систем индикации. В одной из них лазерный луч используется для скрайбирования металлического покрытия стеклянного диапозитива. При этом лазер приме-няется вместо пера с электромеханическим приводом. Если окажется воз-можным разработать соответствующие схемы отклонения, этот метод позво-лит получить значительно большую скорость, чем скорости в современных вычерчивающих проекторах. В этой системе для проецирования использует-ся внешний источник света, что снижает требуемые мощность лазера и его рабочий цикл (и, следовательно, увеличивает срок службы лазера).
Основная проблема, которая еще должна быть решена, касается воз-можности испарения металла без повреждения стеклянного объектива (и всей проекционной системы).
К основным методам лазерной индукции относится также использова-ние лазерного луча для записи на активном экране. Экран может быть вы-полнен из фотохромного, электролюминисцентного или другого материала, вырабатывающего или модулирующего свет. При использовании фотохром-ного экрана требуется ультрафиолетовый лазер. В случае электролюминис-центной панели идеальным является метод координатной сетки с памятью на фотоэлементах. Если выборочное стирание не требуется, то построение сис-темы не связано с трудностями коммутации, которые обычно присущи мат-ричным индикаторам. Выпускаемые в настоящее время электролюминис-центные панели имеют достаточный световой выход и срок службы для применения в театральных системах. При работе этих систем лазерный луч используется для включения надлежащего фотоэлемента. После этого фото-элемент поддерживается во включенном состоянии свечением связанного с ним электролюминисцентного элемента.
Лазерная фотография.
Одним из спецефических применений лазеров в индикации является формирование голограмм. В фотографировании этого типа когерентные свойства света используются для формирования на фотопленке интерферен-ционной картины изображения. Это осуществляется посредством расщепле-ния лазерного луча на две части (или более), из которых одна освещает пленку непосредственно в качестве опорного луча, а другие освещают объ-ект. От объекта свет отражается к пленке и складывается со светом опорного луча, образуя интерференционные картины.
Получаемое изображение, называемое голограммой, имеет специфиче-ские свойства. При рассматривании голограммы в свете когерентного источ-ника получаются два изображения: действительное и мнимое. Действитель-ное изображение можно фотографировать, помещая пленку в его плоскость, без использования объектива. Мнимое изображение можно видеть за голо-граммой при ее непосредственном наблюдении.
Эти изображения имеют несколько характерных особенностей. Мни-мое изображение воспринимается как полное трехмерное изображение, сво-бодное от каких - либо недостатков обычного трехмерного фотографирова-ния. Изменяя свое положение, наблюдатель может заглянуть за лежащие за переднем планом предметы точно таким же образом, как при наблюдении исходного объекта. Еще одна необычная особенность состоит в том, что раз-резание голограммы на две половины уменьшает разрешение изображения, но не изменяет его размеры. Эта особенность объясняется тем, что свет, идущий из ка
| | скачать работу |
Другие рефераты
|