Методы решения уравнений в странах древнего мира
димо, была
известна, получает:
[pic]
Подставляя это значение у в первое из системы уравнений (1), автор
приходит к квадратному уравнению:
[pic]
Решая это уравнение по правилу, применяемому нами в настоящее время,
автор находит х, после чего определяет у. Итак, хотя вавилоняне и не имели
алгебраической символики, они решали задачи алгебраическим методом.
Диофант, который не имел обозначений для многих неизвестных, прилагал
немало усилий для выбора неизвестного таким образом, чтобы свести решение
системы к решению одного уравнения. Вот один пример из его «Арифметики».
Задача 21. «Найти два числа, зная, что их сумма равна 20, а сумма их
квадратов — 208».
Эту задачу мы решили бы путем составления системы уравнений:
[pic]
Диофант же, выбирая в качестве неизвестного половину разности искомых
чисел, получает (в современных обозначениях):
[pic]
Складывая эти уравнения, а затем вычитая одно из другого (все это Диофант
производит устно), получаем
x = 2 + 10; у = 10 —2.
Далее,
х2 + у2 = (г + lO)2 + (10 — г)2 == 2z2 + 200.
Таким образом,
2z2 + 200 = 208,
откуда
z = 2; х = 2 + 10 = 12; у = 10 — 2 = 8.
Диофантовы уравнения.
Задача Диофанта №80 (Из II книги его «Арифметики»)
Найти 2 таких числа, чтобы сумма квадрата каждого из них с другим искомым
числом дала полный квадрат,
Решение Диофанта
Пусть первое число (I) будет s. Чтобы квадрат его •при прибавлении
второго числа дал квадрат, второе число должно быть 2s + 1, так как в таком
случае выполняется требование задачи: квадрат первого числа. сложенный со
вторым, дает
s2 + 2s + 1, то есть полный квадрат (s + 1)2.
Квадрат второго числа, сложенный с первым, должен также дать квадрат, то
есть число (2s + I)2 + s, равное
4s2 + 5s + 1 == t2
Положим, что t = 2s — 2; тогда t2 = 4s2 — 8s + 4. Это выражение должно
равняться 4s2 + 5s + 1. Итак, должно быть:
4s2 — 8s + 4 == 4s2 + 5s + l откуда s=[pic]
Значит, задаче удовлетворяют числа:
[pic].
Проверка;
[pic]
Почему Диофант делает предположение, что t==2s—2, он не объясняет. Во
всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то
или другое предположение, не давая никакого обоснования.
Вообще содержание 6 книг таково:
В «Арифметике» 189 задач, каждая снабжена одним или несколькими решениями.
Задачи ставятся в общем виде, затем берутся конкретные значения входящих в
нее величин и даются решения.
Задачи книги I в большинстве определенные. В ней имеются и такие, которые
решаются с помощью систем двух уравнений с двумя неизвестными,
эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает
условие, чтобы дискриминант был полным квадратом. Так, задача 30— найти
таких два числа, чтобы их разность и произведение были заданными числами,—
приводится к системе
х — у = а, х = b.
Диофант выдвигает «условие формирования»: требуется, чтобы учетверенное
произведение чисел, сложенное с квадратом разности их, было квадратом, т.
е. 4b + а2 = с2.
В книге II решаются задачи, связанные с неопределенными уравнениями и
системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше
второй.
Диофант применяет различные приемы. Пусть необходимо решить
неопределенное уравнение второй степени с двумя неизвестными f2 (х, у) ==0.
Если у него есть рациональное решение (x0, y0), то Диофант вводит
подстановку
x = x0 + t,
y = y0 + kt,
в которой k рационально. После этого основное уравнение преобразуется в
квадратное относительно t, у которого свободный член f2 ( x0, у0) = 0. Из
уравнения получается t1 == 0 (это значение Диофант отбрасывает), t2 —
рациональное число. Тогда подстановка дает рациональные х и у.
В случае, когда задача приводилась к уравнению у2 = ax2 + bx + с, очевидно
рациональное решение x0 = О,y0=±C. Подстановка Диофанта выглядит так:
x = t,
y = kt ± c
Другим методом при решении задач книги II Диофант пользовался, когда они
приводили к уравнению у2 == = a2x2 + bx + с. Он делал подстановку
x= t,
y = at + k,
после чего х и у выражались рационально через параметр k:
[pic]
Диофант, по существу, применял теорему, состоящую в том,; что если
неопределенное уравнение имеет хотя бы одно рациональное решение, то таких
решений будет бесчисленное множество, причем значения х и у могут быть
представлены в виде рациональных функций некоторого параметра»
В книге II есть задачи, решаемые с помощью «двойного неравенства», т. е.
системы
ах + b = и2,
сх + d == v2.
Диофант рассматривает случай а = с, но впоследствии пишет, что метод
можно применить и при а : с = т2, Когда а == с, Диофант почленным
вычитанием одного равенства из другого получает и2 —и2 = b — d. Затем
разность b — d раскладывается на множители b — d = п1 и приравнивает и + v
= I, и — v = п, после чего находит
и = (I + п)/2, v = (I - n)/2, х - (l2 + п2}/4a - {b + d)/2a.
Если задача сводится к системе из двух или трех уравнений второй степени,
то Диофант находит такие рациональные выражения неизвестных через одно
неизвестное и параметры, при которых все уравнения, кроме одного,
обращаются в тождества. Из оставшегося уравнения он выражает основное
неизвестное через параметры, а затем находит и другие неизвестные.
Методы, разработанные в книге II, Диофант применяет к более трудным
задачам книги III, связанным с системами трех, четырех и большего числа
уравнений степени не выше второй. Он, кроме того, до формального решения
задач проводит исследования и находит условия, которым должны удовлетворять
параметры, чтобы решения существовали.
В книге IV встречаются определенные и неопределенные уравнения третьей и
более высоких степеней. Здесь дело обстоит значительно сложнее, потому что,
вообще говоря, неизвестные невозможно выразить как рациональные функции
одного параметра. Но, как и раньше, если известны одна или две рациональные
точки кубической кривой fз (х, у) == 0, то можно найти и другие точки.
Диофант при решении задач книги IV применяет новые методы»
Книга V содержит наиболее сложные задачи; некоторые из них решаются с
помощью уравнений третьей и четвертой степеней от трех и более неизвестных.
Есть и такие, в которых требуется разложить данное целое число на сумму
двух, трех или четырех квадратов, причем эти квадраты должны удовлетворить
определенным неравенствам.,
При решении задач Диофант дважды рассматривает уравнение Пелля ax2 + 1 =
у2.
Задачи книги VI касаются прямоугольных треугольников с рациональными
сторонами. К условию х2 + у2 == z2 в них добавляются еще условия
относительно площадей, периметров, сторон треугольников.
В книге VI доказывается, что если уравнение ax2 + b == у2 имеет хотя бы
одно рациональное решение, то их будет бесчисленное множество. Для решения
задач книги VI Диофант применяет все употребляемые им способы.
Кстати, в одном из древних рукописных сборников задач в стихах жизнь
Диофанта описывается в виде следующей алгебраиче-юй загадки, представляющей
надгробную надпись на его могиле
Прах Диофанта гробница покоит; дивись ей—и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком.
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругою он обручился.
С нею пять лет проведя, сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей.
Задача-загадка сводится к составлению и решению уравнения:
[pic] откуда х = 84 = вот сколько лет жил Диофант.
Неопределённое уравнение x2 + y2 = z2
Такое неопределённое уравнение исследовали пиффагорийцы, целые решения
которого поэтому называют «пифагоровыми тройками», они нашли бесконечно
много таких троек, имеющих вид:
[pic]
Кубические уравнения
Более систематическое исследование задач, эквивалентных кубическим
уравнениям, относится только к эпохе эллинизма. Архимед в сочинении «О шаре
и цилиндре» (книга II, предложение 4) свел задачу о рассечении шара
плоскостью на два сегмента, объемы которых имели бы заданное отношение т :
п (т > п), к нахождению высоты х большего сегмента из пропорции
[pic]
(1)
где а — радиус шара.
Архимед обобщает задачу: рассечь заданный отрезок а на две части х и а—х
так, чтобы
(а — х) : с = S : х2, (2)
где с и S — заданные отрезок и площадь.
Заметив, что при такой общей постановке задача не всегда разрешима
(имеются в виду только положительные действительные решения), Архимед
приступает к ее исследованию с тем, чтобы наложить ограничения на с и S. Он
говорит, что изложит полное решение задачи «в конце», однако
соответствующее место не сохранилось. Жившие на столе
| | скачать работу |
Методы решения уравнений в странах древнего мира |