Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Операторы в вейвлетном базисе



 Другие рефераты
Поставки по ленд-лизу и их влияние на ход войны на восточном фронте Постижение истории в эпоху средневековья Почему началась холодная война? Определение законов распределения случайных величин и их числовых характеристик на основе опытных данных. Проверка статистических гипотез

ВВЕДЕНИЕ



      Вейвлет-преобразование сигналов (wavelet transform),  теория  которого
оформилась в начале 90-х годов, является не менее общим  по  областям  своих
применений, чем классическое преобразование  Фурье.  Принцип  ортогонального
разложения по компактным волнам состоит в возможности  независимого  анализа
функции на разных масштабах  ее  изменения.  Вейвлет-представление  сигналов
(функций времени) является  промежуточным  между  полностью  спектральным  и
полностью временным представлениями.
      Компактные волны относительно независимо были предложены  в  квантовой
физике,  физике  электромагнитных   явлений,   математике,   электронике   и
сейсмогеологии. Междисциплинарные исследования привели к  новым  приложениям
данных  методов,   в   частности,   в   сжатии   образов   для   архивов   и
телекоммуникаций, в исследованиях турбулентности,  в  физиологии  зрительной
системы,  в  анализе  радарных  сигналов  и  предсказании  землетрясений.  К
сожалению, объем  русскоязычной  научной  литературы  по  тематике  вейвлет-
преобразований (да и нейронных сетей) относительно невелик.
      Базовая идея восходит к временам  200-летней  давности  и  принадлежит
Фурье: аппроксимировать сложную функцию взвешенной суммой  простых  функций,
каждая из которых, в свою очередь, получается  из  одной  функции-прототипа.
Эта  функция-прототип  выполняет  роль  строительного   блока,   а   искомая
аппроксимация получается комбинированием  одинаковых  по  структуре  блоков.
При  этом,  если  "хорошая"  аппроксимация  получается   при   использовании
небольшого числа блоков, то тем самым  достигается  значительное  уплотнение
информации.  В  качестве  таких  блоков  Фурье   использовал   синусоиды   с
различными периодами.
      Что прежде всего отличает вейвлет-анализ от  анализа  Фурье?  Основным
недостатком Фурье-преобразования является его "глобальная"  чувствительность
к "локальным" скачкам и пикам функции. При  этом  модификация  коэффициентов
Фурье (например, обрезание высоких гармоник с целью фильтрации шума)  вносит
одинаковые изменения в поведение сигнала на всей  области  определения.  Это
особенность  оказывается  полезной  для  стационарных   сигналов,   свойства
которых в целом мало меняются со временем.
    При исследовании же  нестационарных  сигналов  требуется  использование
некоторых  локализованных   во   времени   компактных   волн,   коэффициенты
разложения   по   которым   сохраняют   информацию   о   дрейфе   параметров
аппроксимируемой функции. Первые попытки  построения  таких  систем  функций
сводились к сегментированию сигнала  на  фрагменты  ("окна")  с  применением
разложения Фурье  для  этих  фрагментов.  Соответствующее  преобразование  -
оконное преобразование Фурье - было предложено в 1946-47  годах  Jean  Ville
и, независимо,  Dennis  Gabor.  В  1950-70-х  годах  разными  авторами  было
опубликовано много модификаций времени-частотных представлений сигналов.
    В  конце  70-х  инженер-геофизик  Морли  (Jean  Morlet)  столкнулся   с
проблемой  анализа  сигналов,  которые   характеризовались   высокочастотной
компонентой  в  течение  короткого  промежутка  времени  и   низкочастотными
колебаниями  при   рассмотрении   больших   временных   масштабов.   Оконные
преобразования позволяли проанализировать либо высокие  частоты  в  коротком
окне  времени,  либо  низкочастотную  компоненту,  но   не   оба   колебания
одновременно. В результате был предложен подход,  в  котором  для  различных
диапазонов частот  использовались  временные  окна  различной  длительности.
Оконные функции получались в  результате  растяжения-сжатия  и  смещения  по
времени гаусиана. Морли назвал эти базисные функции вейвлетами (wavelets)  -
компактными волнами. В дальнейшем благодаря  работам  Мейера  (Yves  Meyer),
Добеши (Ingrid  Daubechies),  Койфмана  (Ronald  Coifman),  Маллы  (Stephane
Mallat) и других теория вейвлетов приобрела свое современное состояние.
    Среди  российских  ученых,  работавших  в  области  теории   вейвлетов,
необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.



                    1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ



Определение  1.  Многомасштабный  анализ  (multiresolutional   analysis)   –
разложение  гильбертова  пространства  L2(Rd),  d(1,  в   последовательность
замкнутых подпространств
                                                                      [pic],
                (1.1)
обладающих следующими свойствами:
1.          [pic],        и          [pic]       полно       в       L2(Rd),

2.     Для любого f( L2(Rd), для любого j( Z,    f(x)(Vj    тогда  и  только
тогда, когда
f(2x) (Vj-1,
3.     Для любого f( L2(Rd), для любого k( Zd,   f(x)(V0    тогда  и  только
тогда, когда         f(x-k)(V0,
4.     Существует масштабирующая (scaling) функция  ((V0,  что  {((x-k)}k(Zd
образует
базис Ритца в V0.
Для ортонормальных базисов можно переписать свойство 4 в виде:
4’.  Существует  масштабирующая  функция  ((V0,  что  {((x-k)}k(Zd  образует
  ортонормальный базис в V0.
Определим подпространство Wj как ортогональное дополнение к Vj в Vj-1,
                                                                      [pic],
                                               (1.2)
и представим пространство L2(Rd) в виде прямой суммы
                                                                       [pic]
                                          (1.3)
      Выбирая масштаб n, можем заменить последовательность  (1.1)  следующей
последовательностью:
                                                                       [pic]
       (1.4)
и получить
                                                                       [pic]
                                     (1.5)
      Если имеем конечное число масштабов, то, не  нарушая  общности,  можно
положить j=0 и рассматривать
                                                   [pic],      V0(    L2(Rd)
                          (1.6)
вместо (1.4). В числовой реализации подпространство V0 конечномерно.
      Функция ( - так называемая масштабирующая (скейлинг-)  функция.  С  ее
помощью можно определить функцию ( -  вейвлет  -  такую,  что  набор   {((x-
k)}k(Z  образует ортонормальный базис в W0. Тогда
                                                        [pic],     m=0..M-1.
                                     (1.7)
Из свойства 4’ непосредственно следует,  что,  во-первых,  функция  (  может
быть представлена в виде линейной комбинации базисных  функций  пространства
V-1   .   Так   как    функции     {(j,k(x)=2-j/2((2-jx-k)}k(Z      образуют
ортонормальный базис в Vj, то имеем
                                                                      [pic].
                              (1.8)
Вообще говоря, сумма в выражении  (1.8)  не  обязана  быть  конечной.  Можно
переписать (1.8) в виде
                                                                      [pic],
                                (1.9)
где
                                                                      [pic],
                            (1.10)
а 2(-периодическая функция m0 определяется следующим образом:
                                                                      [pic].
                                  (1.11)
      Во-вторых, ортогональность {((x-k)}k(Z подразумевает, что
                                                                       [pic]
  (1.12)
и значит
                                                                       [pic]
                    (1.13)
и                                                                     [pic].
                                     (1.14)
Используя (1.9), получаем
                                                                       [pic]
            (1.15)
и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем
     [pic].   (1.16)
Используя 2(-периодичность функции m0 и  (1.14),  после  замены  (/2  на  (,
получаем необходимое условие
                                                                       [pic]
                           (1.17)
для коэффициентов hk в (1.11). Заметив, что
                                                                       [pic]
                                (1.18)
и определив функцию ( следующим образом:
                                                                      [pic],
                           (1.19)
где
                                               [pic],         k=0,…,L-1    ,
                                  (1.20)
или преобразование Фурье для (
                                                                      [pic],
                              (1.21)
где
                                                                      [pic],
                                  (1.22)
можно   показать,       что    при     каждом     фиксированном     масштабе
j(Z     вейвлеты
{(j,k(x)=2-j/2((2-jx-k)}k(Z  образуют ортонормальный базис пространства Wj.
      Равенство (1.17)  определяет  пару  квадратурных  зеркальных  фильтров
(quadrature mirror filters, QMF) H и G, где [pic] и [pic]. Коэффициенты  QMF
H и G вычисляются с помощью решения системы алгебраических уравнений.  Число
L коэффициентов фильтра в  (1.11)  и  (1.22)  связано  с  числом  исчезающих
моментов М, и  всегда четно.
      Выбранный фильтр Н  полностью  определяет  функции  (  и  (  и,  таким
образом,  многомасштабный  анализ.  Кроме  того,  в  правильно   построенных
алгоритмах значения функций ( и ( почти никогда  не  вычисляются.  Благодаря
рекурсивному определению  вейвлетного  базиса,  все  операции  проводятся  с
квадратурными зеркальными фильтрами H и G,  даже  если  в  них  используются
величины, связанные с ( и (.



                                4. ОПЕРАТОРЫ


      Сжатие операторов или, другими словами, представ
12
скачать работу


 Другие рефераты
Клеточная инженерия
Органикалық қосылыстар
Қазақ хандары
Этика французских просветителей


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ