Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Получение фенолов

ашения") плава; 3 - фильтр для выделения сульфита натрия; 4  —  скруббер
 для выделения фенолов из фенолятов;  5 - отстойник.
 Потоки: I - арилсульфонат натрия, II — едкий натp; III - водяной паp; IV -
  продукты щелочного плавления; V - вода; VI - отбросные газы и пары; VII  -
 paствop фенолятов в смеси с  кристаллами  сульфита  натрия;  IX  -  раствор
 фенолятов натрия; Х  — двуокись серы; XI - фенолы; XII - сульфитный щелок.

мокрого песка, что увеличивает опасность пригорания и окисления  плава.  При
большем  избытке  щелочи   образуется   светлый,   подвижный   плав,   легко
перемешивающийся якорной мешалкой.
      Увеличение мольного отношения щелочь сульфокислота с  2,5  до  4  -  5
увеличивает выход крезола с 50—60 до 70 -  80%,  считая  на  исходную  соль.
Однако  при  оптимальных  температурах  и  при  минимальном  избытке  щелочи
(мольное соотношение  щелочь -  сульфонат  2,5)  также  возможно  достижение
выходов крезола порядка 84—92%.
      Данные о влиянии  температуры  на  выход  крезолов  противоречивы.  По
данным  Энгланда,  оптимальная  температура  составляет   340—360оС.   Опыты
показывают, что  при  этой  температуре  происходит  значительное  осмоление
плава, а выход фенола увеличивается до 5%, считая  на  крезол.  Максимальный
выход достигается при температуре 320 оС.
      Выход фенолов при  щелочном  плавлении  зависит  также  и  от  избытка
щелочи, что иллюстрирует рис. 429. Увеличение времени пребывания фенолята  н
сульфоната  в  зоне  высоких  температур  усиливает   образование   побочных
продуктов.
      Существование оптимальных соотношений температур и времени  пребывания
в зоне нагрева  подтверждается  данными  о  щелочном  плавлении  сульфонатов
ксилолов:
                                                                Таблица 2.1.
    Щелочное плавление солей сульфокислот м-ксилола (мольное соотношение
                            щелочь; соль равно 3)

|Условия плавки      |Состав фенолов, %                |Выход 2 ,4-  |
|                    |                                 |ксиленола,   |
|                    |                                 |считая на    |
|                    |                                 |исходную     |
|                    |                                 |соль, %      |
|         |         |          |        |            |             |
|температу|время,   |фенол     |крезолы |2,4-ксиленол|             |
|ра, оС   |ч        |          |        |            |             |
|320      |1,0      |6,13      |2,55    |90,40       |58,53        |
|»        |1,5      |2,00      |4,3     |92,5        |78,25        |
|»        |2,0      |4,65      |5,08    |85,6        |69,85        |
|330      |1,5      |6,05      |2,3     |92,5        |57,45        |
|340      |0,5      |1,60      |1,74    |96,0        |11,22        |
|»        |1,0      |4,88      |1.95    |92,5        |15,66        |
|»        |1,5      |5,05      |4,90    |90,0        |40,25        |
|350      |1,5      |2,3       |12,16   |85,7        |23,6         |
|360      |1,5 I 5  |31,2                |78,8 16,9   |20,4 0,75    |
|375      |         |83,0                |            |             |

      Таким образом, в зависимости  от  условий  щелочного  плавления  выход
фенолов на этой стадии может  колебаться  в  довольно  широких  пределах.  В
особенности это относится к щелочному  плавлению  дисульфокислот.  Так,  при
щелочном плавлении соли  бензол-м-дисульфокислоты  по  разным  данным  выход
колеблется  от  20  до  90%.  Это  объясняется  особой  легкостью  окисления
двухатомных фенолов и соответствующих сульфокислот,  иx  сравнительно  малой
термической устойчивостью,  а  также  своеобразным  изменением  консистенции
плава.  До  200°С  плав  представляет  асфальтоподобную  вязкую   массу.   В
интервале 200 - 280°С плав у большинства дисульфокислот  приобретает  жидкую
консистенцию, при 290°С после  завершения  замещения  одной  сульфогруппы  в
плавильнике   вновь  тестообразная  масса,  даже  иногда   рассыпающаяся   в
порошок, после 290 -  300оС  выделяется  вода,  образующаяся  при  замещении
второй сульфогруппы, и масса вновь приобретает подвижность. И, наконец,  при
завершении  отгона этой воды  плав  снова  обращается  в  порошок.  Все  эти
превращения резко  меняют  условия  перемешивания  содержимого  плавильника,
увеличивают опасность местных перегревов, пригорания реакционной  массы,  ее
усиленного окисления.

      Рис. 2.3. Принципиальная  технологическая  схема  щелочного  плавления
арилсульфонатов натрия в трубчатом реакторе.

      Аппараты:  1 - насос; 2 -   теплообменник; 3 - трубчатый реактор;  4 -
дроссельный вентиль; 5 -   испаритель; 6 -  фильтр  для  выделения  сульфата
натрия.
      Потоки: I - раствор арилсульфоната натрия; II -  раствор едкого натpa;
III - раствор продуктов щелочного плавления; IV -  водяной пар; V -  раствор
фенолятов в смеси с кристаллами сульфита натрия; VI - сульфит натрия; VII  -
pacтвоp фенолятов натрия на нейтрализацию.
      Какие возможны пути сокращения опасности перегревов?  Один  из  них  —
увеличение избытка  щелочи.  Главный  недостаток  этого  приема   увеличение
себестоимости целевого продукта. Другой путь —  плавление  водных  растворов
сульфоната  и  щелочи.  Смешение  водных  растворов   большой   концентрации
способ, широко практикуемый. При этом часто первый этап щеточного  плавления
обращается в выпарку на  неприспособленном  оборудовании  и  лишь  несколько
упрощается  приготовление  смеси,  используемой   для   плавления.   Правда,
небольшое количество воды остается в плаве и снижает  температуру  плавления
компонентов,  уменьшает  вязкость  плава.  Более  эффективной   может   быть
переработка 15-30%-ных водных растворов щелочей и сульфонатов при  360-380оС
под давлением. При этом  вода  не  испаряется,  реакционная  масса  обладает
высокой подвижностью, система полностью герметизована и исключается  внешнее
окисление.
      Необходимость работы при давлении около 200 кгс/см2 не вызывает особых
затруднений, так как используются  трубчатые  реакторы  (рис.  2.3.).  Схема
становится компактной, полностью непрерывной, легко управляемой.  Применение
змеевика  обеспечивает  большую  скорость   потока   и   исключает   местные
перегревы. Выход фенола может быть доведен до 98%.
      По-видимому, это наиболее перспективный путь непрерывного оформления
процесса. Частным вариантом этой схемы является термическое разложение
сульфонатов в смеси с расплавом фенолятов.


2.3. Получение фенолов окислительным декарбоксилированием арилкарбоновых
кислот


      Одним из способов синтеза фенолов из углеводородов является
двухстадийное окисление. На первой стадии тем или иным способом, чаще
жидкофазным окислением в среде углеводорода, алкилароматический углеводород
обращают в  соответствующую арилкарбоновую кислоту:

      На следующей стадии производится окисление арилкарбоновой кислоты
кислородом воздуха в присутствии водяного пара. Катализатором окисления,
как правило, служат соли двухвалентной меди. При этом отщепляется двуокись
углерода и образуется соответствующий фенол.
   Метод привлек внимание прежде  всего  потому,  что  этим  способом  можно
получать фенол из недефицитного толуола  вместо  бензола.  Оказалось  также,
что метод  пригоден  для  приготовления  крезолов  из  толуиловых  кислот  и
нафтолов из нафтойных кислот. Возможность  использования  в  качестве  сырья
недефицитные гомологи бензола и  нафталина,  сравнительно  малое  количество
побочных продуктов, высокая чистота  производимых  фенолов  и  использование
кислорода  воздуха  в  качестве  окисляющего  агента  —  все   это   вызвало
значительный интерес к новому способу производства фенолов.
   Процесс  окислительного  декарбоксилирования  состоит  из  двух  основных
стадий:  окисления  углеводорода  до  арилкарбоновой  кислоты  и  собственно
окислительного декарбоксилирования последней.  С  процессом  связаны  стадии
разделения продуктов  окислительного  декарбоксилирования  и  возвращения  в
цикл водных растворов фенолов и переработки образующейся смолы с  выделением
катализатора для возвращения его в процесс.


2.3.1. Представление о механизме окислительного декарбоксилирования
арилкарбоновых кислот


   Окислительное декарбоксилирование арилкарбоновых  кислот  проводится  при
200—300°С в присутствии солей  двухвалентной  меди  при  подаче  в  реактор
воздуха и водяного пара.
   Термическое разложение бензоата меди было описано еще в 1845 г.,  позднее
появился ряд статей, касающихся данного вопроса. Эти работы  показали,  что
при сухой перегонке бензоата образуются фенол, бензол,  бензойная  кислота,
салициловая кислота,  фенилбензоат.  В  пятидесятые  годы  нашего  столетия
появилась  серия  патентов,  предлагавших  применение  этого  процесса  для
получения  фениловых  эфиров  и  фенолов   из   арилкарбоновых   кислот   и
арилсульфокислот. Важным  и  интересным  является  то  обстоятельство,  что
гидроксильная группа  получаемого  фенола  становится  в  орто-положение  к
удаляемой карбоксильной или сульфогруппе. Так, из о- и n-толуиловых кислот,
а также из n-толуолсульфокислоты образуется м-крезол, из м-толуиловой —  о-
и п-крезолы, из о-хлорбензойной и п-хлорбензойной кислот —- м-хлорфенол; из
мезитиленовой кислоты  2,4-ксиленол, из ?- и ?-нафтойных кислот ?-нафтол.
   Процесс превращения ароматических карбоновых кислот в фенолы  может  быть
представлен рядом следующих последовательных стадий.
1. Образование медной соли ароматической карбоновой кислоты:

2.   Термическое разложение полученной соли с переходом  и с образованием
   сложного эфира салициловой или смещенной салициловой кислоты:

           При нагревании солей двухвалентной меди без доступа пара и
   воздуха исчезает характер
12345След.
скачать работу

Получение фенолов

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ