Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Самостоятельная работа как средство обучения решению уравнений в 5-9 классах

и
квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их
следующим образом:
   1) «Квадраты равны корням», т. е. ах2 = bх.
   2) «Квадраты равны числу», т. е. ах2 = с.
   3) «Корни равны числу», т. е. ах = с.
   4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.
   5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.
   6) «Корни и числа равны квадратам», т. е. bх + с == ах2.
   Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены
каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не
берутся во внимание уравнения, у которых нет положительных решений. Автор
излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и
ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не
говоря о том, что оно чисто риторическое, следует отметить, например, что
при решении неполного квадратного уравнения первого вида ал-Хорезми, как и
все математики до XVII в., не учитывает нулевого решения, вероятно, потому,
что в конкретных практических задачах оно не имеет значения. При решении
полных квадратных уравнений ал-Хорезми на частных числовых примерах
излагает правила решения, а затем их геометрические доказательства.
   Приведем пример.
   Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень»
(подразумевается корень уравнения х2 + 21 = 10х).
   Решение автора гласит примерно так: раздели пополам число корней,
получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4.
Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет
искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
   Трактат ал-Хорезми является первой дошедшей до нас книгой, в которой
систематически изложена классификация квадратных уравнений и даны формулы
их решения.
§ 2. Содержание и роль линии уравнений в современном школьном курсе
математики

Материал, связанный с уравнениями, составляет значительную часть школьного
курса математики. Это объясняется тем, что уравнения широко используются в
различных разделах математики, в решении важных прикладных задач.
      Истоки алгебраических методов решения практических задач связаны с
наукой древнего мира. Как известно из истории математики, значительная
часть задач математического характера, решаемых египетскими, шумерскими,
вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный
характер. Однако уже тогда время от времени возникали задачи, в которых
искомое значение величины задавалось некоторыми косвенными условиями,
требующими, с нашей современной точки зрения, составления уравнения или
системы уравнений. Первоначально для решения таких задач применялись
арифметические методы. В дальнейшем начали формироваться начатки
алгебраических представлений. Например, вавилонские вычислители умели
решать задачи, сводящиеся с точки зрения современной классификации к
уравнениям второй степени. Таким образом, был создан метод решения
текстовых задач, послуживший в дальнейшем основой для выделения
алгебраического компонента и его независимого изучения.
      Это изучение осуществлялось уже в другую эпоху сначала арабскими
математиками (VI—Х вв. н. э.), выделившими характерные действия,
посредством которых уравнения приводились к стандартному виду (приведение
подобных членов, перенос членов из одной части уравнения в другую с
переменой знака), а затем европейскими математиками Возрождения, в итоге
длительного поиска создавшими язык современной алгебры (использование букв,
введение символов арифметических операций, скобок и т. д.). На рубеже
XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим
предметом, методом, областями приложения, была уже сформирована. Дальнейшее
ее развитие, вплоть до нашего времени, состояло в совершенствовании
методов, расширении области приложений, уточнении понятий и связей их с
понятиями других разделов математики. В этом процессе все яснее становилась
важность роли, которую играло понятие уравнения в системе алгебраических
понятий.
      Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним
развитие аналитической геометрии позволили применить алгебру не только к
задачам, связанным с числовой системой, но и к изучению различных
геометрических фигур. Эта линия развития алгебры упрочила положение
уравнения как ведущего алгебраического понятия, которое связывалось теперь
уже с тремя главными областями своего возникновения и функционирования:
a) уравнение как средство решения текстовых задач;
b) уравнение как особого рода формула, служащая в алгебре объектом
   изучения;
c) уравнение как формула, которой косвенно определяются числа или
   координаты точек плоскости (пространства), служащие его решением.
   Каждое кз этих представлений оказалось в том или ином отношении полезным.
   Таким образом, уравнение как общематематическое понятие многоаспектно,
причем ни один из аспектов нельзя исключить из рассмотрения, особенно если
речь идет о проблемах школьного математического образования.
   Ввиду важности и обширности материала, связанного с понятием уравнения,
его изучение в современной методике математики организовано в содержательно
- методическую линию — линию уравнений и неравенств. Здесь рассматриваются
вопросы формирования понятий уравнения и неравенства, общих и частных
методов их решения, взаимосвязи изучения уравнений и неравенств с числовой,
функциональной и другими линиями школьного курса математики.
   Выделенным областям возникновения и функционирования понятия уравнения в
алгебре соответствуют три основных направления развертывания линии
уравнений и неравенств в школьном курсе математики.
   а) Прикладная направленность линии уравнений раскрывается главным образом
при изучении алгебраического метода решения текстовых задач. Этот метод
широко применяется в школьной математике, поскольку он связан с обучением
приемам, используемым в приложениях математики.
   В настоящее время ведущее положение в приложениях математики занимает
математическое моделирование. Используя это понятие, можно сказать, что
прикладное значение уравнений, их систем определяется тем, что они являются
основной частью математических средств, используемых в математическом
моделировании.
   б) Теоретико-математическая направленность линии уравнений раскрывается в
двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и
их систем и, во-вторых, в изучении обобщенных понятий и методов,
относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной
математики. Основные классы уравнений связаны с простейшими и одновременно
наиболее важными математическими моделями. Использование обобщенных понятий
и методов позволяет логически упорядочить изучение линии в целом, поскольку
они описывают то общее, что имеется в процедурах и приемах решения,
относящихся к отдельным классам уравнений, неравенств, систем. В свою
очередь, эти общие понятия и методы опираются на основные логические
понятия: неизвестное, равенство, равносильность, логическое следование,
которые также должны быть раскрыты в линии уравнений
   в) Для линии уравнений характерна направленность на установление связей с
остальным содержанием курса математики. Эта линия тесно связана с числовой
линией. Основная идея, реализуемая в процессе установления взаимосвязи этих
линий,— это идея последовательного расширения числовой системы. Все
числовые области, рассматриваемые в школьной алгебре и началах анализа, за
исключением области всех действительных чисел, возникают в связи с решением
каких-либо уравнений и их систем. Области иррациональных и логарифмических
выражений связаны соответственно с уравнениями хk = b (k - натуральное
число, большее 1) и ax=b.
   Связь линии уравнений с числовой линией двусторонняя. Приведенный пример
показывает влияние уравнений на развертывание числовой системы. Обратное
влияние проявляется в том, что каждая вновь введенная числовая область
расширяет возможности составления и решения различных уравнений. Например,
введение арифметического квадратного корня из рациональных чисел позволяет
записывать корни не только уравнений вида х2 = b, где b—неотрицательное
рациональное число, но и любых квадратных уравнений с рациональными
коэффициентами и неотрицательным дискриминантом.
Линия уравнений тесно связана также и с функциональной линией. Одна из
важнейших таких связей — приложения методов, разрабатываемых в линии
уравнений, к исследованию функции (например, к заданиям на нахождение
области определения некоторых функций, их корней, промежутков
знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает
существенное влияние как на содержание линии уравнений и неравенств, так и
на стиль ее изучения. В частности, функциональные представления служат
основой привлечения графической наглядности к решению и исследованию
уравнений, неравенств и их систем.
      С функциональной линией непосредственно связан также и небольшой круг
вопросов школьного курса математики, относящихся к дифференциальным и
функциональным уравнениям. Сама возможность возникновения дифференциального
уравнения кроется в наличии операции дифференцирования (может быть
поставлен вопрос о нахождении для заданной функции ( другой функции F,
такой, что F' (x)=f (х)).
      Однако сама по себе возможность выделения дифференциальных уравнений в
школьном курсе математики еще не следует из того факта, что имеются
формальные основания для их рассмотрения. Как известно, теория
дифференциальных уравнений обладает большой сложностью. В школьном обучении
эта теория представлена лишь своими начальными частями, которые не образуют
связного целого, а относятся к различным конкретным, по большей части
прикладным вопросам.
      По-видимому, понятие дифференциального уравнения допускает более
широк
12345След.
скачать работу

Самостоятельная работа как средство обучения решению уравнений в 5-9 классах

 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ