Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Упругий и неупругий удар двух однородных шаров



 Другие рефераты
Упрощённая кинетическая модель XeCl* лазера Упругие волны Успехи и недостатки теории Бора Уточнение планов применения авиации будущей

Упругий и неупругий удар двух однородных шаров

                                 1. Введение
      Столкновения движущихся тел  присущи  всем  уровням  Мироздания  –  от
микроскопического  до   космического,   поэтому   ударные   явления   весьма
многообразны.  В   динамике   изучают   влияние   соударений   на   движение
механических  систем.  Эта  задача  привлекала  внимание  многих   известных
ученых, включая Х. Гюйгенса, И.  Ньютона,  Ж.  Даламбера,  С.  Пуансона,  Г.
Дарбу, Э. Дж. Рауса,  А.М.  Ляпунова,  Н.Е.  Жуковского,  С.П.  Тимошенко  и
многих других. Специфика ударов состоит в их интенсивности и  скоротечности.
Данное свойство может оказаться и полезным, как  при  забивке  свай,  добыче
руды или  игре  в  мяч,  и  опасным,  как  при  транспортных  происшествиях.
Следовательно, проблема удара важна не  только  для  теоретиков,  но  и  для
конструкторов, автолюбителей, спортсменов и др.

                          2. Подходы в теории удара
      С физической  точки  зрения  ударные  силы  –  отклик  на  деформации,
возникающие вблизи площадки контакта  и  волнообразно  распространяющиеся  в
данных телах. Математические модели отражают  этот  процесс  с  большей  или
меньшей полнотой. В классической теории удара деформации  не  учитываются  и
проблема сводится к определению интегральных характеристик ударных сил –  их
импульсов.  В  основе  этой  теории  лежат  законы  механики   и   некоторые
дополнительные гипотезы.
      Рассмотрим для примера простейшую задачу о прямом ударе двух  шаров  с
массами m1 и m2.

                                  На  рисунке  шары  массой  m1  и  m2.   до
соударения имеют
                                  скорости v1-  и  v2-  требуется  найти  их
скорости после удара.



      Закон сохранения импульса выражается формулой:

                m1 v1i    +   m2 v2i   =   m1 v1   +   m2 v2

      где v1i и v2i ; v1 и v2  соответствуют до – и  послеударным  значениям
скоростей. Этого единственного уравнения недостаточно для  определения  двух
неизвестных v1  и v2. Чтобы построить единственное  решение,  можно  принять
одну  из  следующих  гипотез:  суммарная  кинетическая  энергия  при   ударе
сохраняется (абсолютно упругий удар),  шары  после  удара   не  разделяются,
т.е. v1   =   v2 (абсолютно  неупругий  удар).  Можно  выбрать  более  общую
гипотезу Ньютона, согласно которой

                 v2   -    v1     =   e ( v1i    -    v2i )

      Коэффициент восстановления e, как экспериментально  установил  Ньютон,
зависит от материала шаров и лежит в пределах от нуля до единицы.
      Волновая теория удара, восходящая к Б. Сен –  Венану,  наиболее  полно
описывает напряженное состояние соударяемых тел. В ее основе лежит  довольно
сложные уравнения математической физики, допускающие точное решение  лишь  в
исключительных  случаях.  В  общем  случае  использование  волновой   теории
нецелесообразно, в частности, с ее помощью не удается  решить  рассмотренную
задачу об ударе шаров.
      Компромиссом между  этими  двумя  крайними  подходами  служат  модели,
частично учитывающие деформации.  Идею  таких  методов  предложил  Даламбер,
который мысленно помещал маленькую пружинку (деформируемый элемент) в  точку
ударного контакта. С математической точки зрения проблема удара  сводится  к
решению  обыкновенных  дифференциальных  уравнений,  что   не   представляет
принципиальных трудностей. В вышеприведенном примере идеальная  пружинка  не
рассеивает энергию, поэтому удар будет абсолютно упругим.

                          3. Упругое соударение тел

      При упругом соударении тел тела претерпевают упругую  деформацию.  При
этом кинетическая энергия движущихся тел частично или полностью переходит  в
потенциальную энергию  упругой  деформации  и  во  внутреннюю  энергию  тел.
Взаимодействующие тела представляют собой замкнутую систему, если на них  не
действуют силы со стороны  других  тел.  В  замкнутых  системах  выполняются
законы сохранения энергии и импульса. Зная движение тел  до  столкновения  и
применяя  законы   сохранения,   можно   определить   движение   тел   после
столкновения. Но при этом мы ничего не узнаем о  том,  как  происходит  само
столкновение. Для решения же ряда  задач  о  столкновении  микрочастиц,  как
правило, достаточно знать об их  движении  после  взаимодействия.  "Моделью"
для задач подобного рода служит  задача  о  столкновении  шаров.  Если  шары
катаются по гладкой горизонтальной поверхности, и если силой трения  качения
можно  пренебречь,  то  систему  из  двух  шаров  можно  считать  замкнутой.
Существует два  предельных  вида  удара:  абсолютно  неупругий  и  абсолютно
упругий.

   Столкновение (соударение)  -  это  кратковременное  взаимодействие,  при
котором тела непосредственно касаются друг друга.
   Анализ явлений, имеющий место при ударе упругих сплошных  тел,  довольно
сложен, поэтому рассмотрим самый простой  случай  -  центральное  соударение
двух однородных  шаров.  Соударение  называется  центральным,  если  векторы
скорости шаров до удара направлены по прямой, проходящей через их центры.
   Абсолютно упругие и неупругие столкновения - это  идеальные  случаи.  На
практике  они  могут  быть  реализованы   лишь   с   определенной   степенью
приближения. В  произвольном  случае  соударения  шаров  справедливы  законы
сохранения импульса и энергии:
      Абсолютно  упругим  называется   такой   удар,   после   которого   во
взаимодействующих  телах  не  остается  никаких   деформаций   и   суммарная
кинетическая энергия, которой обладали тела  до  удара,  равна  кинетической
энергии   тел   после   удара.   Чтобы   удар   был    абсолютно    упругим,
взаимодействующие тела должны обладать определенными свойствами.  А  именно,
силы, возникающие при ударе, должны зависеть от  величины  деформации  и  не
зависеть от ее  скорости.  Наиболее  близкими  к  этим  свойствами  обладают
хорошие  сорта  стали,  слоновая  кость.  Соударение  таких  тел  происходит
следующим образом. При  ударе  возникают  деформации  соударяющихся  тел,  а
значит  и  силы,  сообщающие  ускорения  обоим  телам,   в   противоположных
направлениях. В какой то момент времени скорости шаров  становятся  равными,
деформации достигают максимального значения,  силы  продолжают  действовать,
изменяя скорости в тех же направлениях, что и  раньше.  Поэтому  шары  будут
"отодвигаться" друг от  друга,  а  деформации  уменьшаться  пока  совсем  не
исчезнут. К  этому  моменту  времени  упругие  силы,  возникающие  в  телах,
совершат такую же работу, какая была затрачена на деформацию.  В  результате
вся кинетическая энергия, которой обладали тела до удара, снова  перейдет  в
кинетическую энергию тела после удара. Для определения  скорости  тел  после
упругого взаимодействия рассмотрим удар  двух  шаров  (материальных  точек),
образующих замкнутую систему.

                  3.1. Центральное упругое столкновение тел
      Имеются  два  сферических  объекта  (шарика)  с  массами  m1   и   m2.
Предположим, что эти шарики движутся без вращения по одной оси и  испытывают
центральное упругое соударение. В  этом  случае  закон  сохранения  импульса
запишется в виде:

                         m1v1i + m2v2i = m1v1 + m2v2

где v1i и v2i - начальные скорости каждого объекта, а v1 и v2 - их  конечные
скорости. Закон сохранения энергии записывается в виде:

               m1v1i2 / 2 + m2v2i2 / 2 = m1v12 / 2 + m2v22 / 2

      Векторы скоростей шаров после упругого удара  будут  лежать  на  линии
центров шаров, потому что силы  взаимодействия  во  время  удара  вследствие
симметрии будут направлены по этой же прямой.
Закон сохранения импульса может быть преобразован следующим образом:

                        m1 (v1i - v1) = m2 (v2 - v2i)

Также преобразуем выражение для закона сохранения энергии

                      m1 (v1i2 - v12) = m2 (v22 - v2i2)

      Если разница между начальной и конечной скоростями не равна  нулю  (то
есть столкновение действительно произошло), мы  можем  разделить  второе  из
двух последних уравнений на первое, что дает:

                             v1i + v1 = v2 + v2i

                                     или

                             v1i - v2i = v2 - v1

      Другими   словами,   в   одномерном   случае   упругих    столкновений
относительная  скорость  движения  объектов  после  столкновения   равняется
относительной скорости движения до столкновения.
      Чтобы получить конечные скорости движения объектов через их  начальные
скорости и массы, нужно выразить v2 из  последнего  уравнения  и  подставить
его в уравнение для закона сохранения импульса. Окончательно получаем:

           v1 = v1i (m1 - m2) / (m1 + m2) + v2i (2 m2) / (m1 + m2)

Таким же способом находим выражение для v2

           v2 = v1i (2 m1) / (m1 + m2) + v2i (m2 - m1) / (m2 + m1)

Далее предположим, что сталкиваются объекты с одинаковой массой, т.е. m1=
m2 = m. В этом случае:

              v1 = v1i (m - m) / (m + m) + v2i (2 m) / (m + m)
              v2 = v1i (2 m) / (m + m) + v2i (m - m) / (m + m)

Окончательно получаем, что

                             v1 = v2i и v2 = v1i

      Это означает, что в случае центрального упругого соударения объектов с
равными массами, они будут просто  обмениваться  скоростями.  Если  один  из
объектов до столкновения покоился, то после столкновения он  остановится,  а
второй объект начнёт движение. При этом скорость  движения  второго  объекта
будет равна скорости первого объекта до столкновения.
      В общем случае центрального и абсолютно упругого столкновения объектов
с разными массами, один из которых до столкновения покоился (v2i =0),  можно
записать следующие выражения для скоростей после удара:

                       v1 = v1i (m1 - m2) / (m1 + m2)

                         v2 = v1i (2 m1) / (m1 + m2)

      
123
скачать работу


 Другие рефераты
Финансовый менеджмент в коммерческом банке
Жансүгіров Ілияс (1894-1938)
АҚТӨБЕ ОБЛЫСЫНЫҢ ГЕОЭКОЛОГИЯЛЫҚ МӘСЕЛЕЛЕРІН ШЕШУ ЖОЛДАРЫ
Изучение теории личности и межличностных отношений


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ