Уран
Другие рефераты
1. Химические свойства четырех и шести валентного урана.
Уран -белый металл плотностью 18,3 г/см, плавящийся при температуре
1133 градуса. Металл достаточно активен - при слабом нагревании он
загорается в присутствии воздуха. Он легко соединяется с серой и
галогенами, вытесняет водород из разбавленных кислот, с образованием солей
четырехвалентного урана, а в очень измельченном виде вытесняет водород из
воды.
Урановый ангидрит имеет характер амфотерного окисла который при
растворении в кислотах образует соли, где роль металла играет ион (UO^), а
при растворении в щелочах образует кислотные остатки в виде комплексных
соединений. В химических соединениях уран может находится в четырех
валентных состояниях U3+, U4+,U5+,U6+. U3+ в природных условиях не
существует и может быть получен только в лаборатории. Соединения
пятивалентного урана в основном не устойчивы и легко разлагаются на
соединения четырех и шестивалентного урана.
2UCl5= UCl4+UCl6
В водных растворах U5+ находят в виде комплексного иона (UO2)+. В
щелочной среде устой чивость иона возрастает.
Наиболее устойчивыми ионами в природных условиях являются четырех и
шести валентный уран. Ионы четырехвалентного урана устойчивы в
востановительной обстановке. Они получаются путем потери двух электронов с
s подуровня 7-го уровня d-подуровня 6-го уровня и f-подуровня 5-го уровня
при этом образуется ионы с внешним восьмиэлектронным уровнем аналогичным с
благородными газами что характерно для литофильных элементов. Это объясняет
их высокую химическую активность по отношению к кислороду и с абую
поляризационную способность.
Известно что кислотные или щелочные свойства элементов зависят от
отношения валентности к ионному радиусу. Оценку кислотных свойств удобно
производить по диаграмме Картледжа. Здесь же можно также оценить элементы
способные производить изоморфные замещения при условии сходной электронной
структуры. Из схемы видно, что в сильнощелочных растворах U4+ может
проявлять ангид-
ридные свойства, но в нейтральных и слабокислых активно реагирует
с ионами гидроксила, а гидроксил четырехвалентного урана плохо
растворяется в воде. Для U(OH)4 растворимость составляет
5,2*10-12 моль/л, что в 1000 раз ниже растворимости гидроксида алюминия.
В отличии от четырехвалентного урана шестивалентный уран принимает
более активное участие в геологических процессах.
Для UО2(OH)2 растворимость составляет 3.5*10-9 моль/л. Константа
диссоциации равна 2*10-22. В неитральной среде концентрация ионов уранила
равна 10-8 моль/л и только в кислых растворах рН=4 она повышается до 10-2
моль/л. Учитывая, что в растворе могут присутствовать, как продукты
гидролиза, ионы UO2(OH)+, общая концентрация ионов урана в нейтральной
среде не опускается ниже 10-6 моль/л.
Катион UO2+2 представляет собой линейное образование в центре которого
находится U4+, а атомы кислорода расположены на одинаковых растояниях. По
данным ионных радиусов было установлено, что связь атома урана с атомами
кислорода носит ковалентный характер. При ковалентной связи атомы имеют
общие элкектроны, которые объясняют высокую прочность соединения. Низкую
прочность соединений шестивалентного урана объясняется тем что весь заряд
сосредоточен вокруг урана, а не вокруг кислорда. Ионный радиус этого
катиона примерно равен 3 А, такой радиус значительно затрудняет изоморфное
вхождение в кристаллическую структуру. Следовательно самостоятельные
минералы шестивалентного урана могут образовываться в основном с крупными
анионами. Большие размеры катиона U+6 объясняют его накопление в
мелкозернистых породах.
2. Распространенность урана в земной коре.
Несмотря на высокий атомный номер и возможность распада ядер,
содержание урана в земной коре относительно высокое. В земной коре
содержится около 2.5*10-4% урана. В коре содержание урана достигает 4*10-
4%, в мантии 1.2*10-6% и ядре 3*10-7%.
2.1 Магматические горные породы.
Кларк урана сильно меняется в зависимости от состава магматических
горных пород. Наибольшее значение КК=14 в щелочных и ультращелочных горных
породах. Кларк урана прямопропорционально зависит от агпаитности горных
пород. Так самые высокие содержания отмечаются в агпаитовых нефелиновых
сиенитах Ловозерского массива. Причем уран больше концентрируется в
акцессорных мине-
ралах инрузивных пород. При щелочно-кремнистом метасоматозе гранитных
интрузий часто происходит диффузионное перераспределение урана с
извлечением его из кристаллической решетки акцессорных минералов. В
эффузивных породах до 90% урана находится в стекловидной массе.
На сегодняшний день магматические рудопроявления промышленного значения
не имеют.
2.2 Метаморфические горные породы.
В метаморфических породах содержание урана обычно ниже кларка. Наиболее
высокими содержаниями урана характеризуются углеродисто-кремнистые сланцы и
богатые калием различные гнейсы.
При метаморфизме полевошпат-кварцевых пород происходит миграция урана
от центра к периферии толщи.
Существенное изменение содержания урана вызывают процессы
ультраметаморфизма и гранитизации. Особенно значительное обогащение ураном
происходит при щелочно-кремнистом метасоматозе.
2.3 Осадочные породы.
Накопление урана в осадочных породах безусловно происходит очень не
равномерно, из-за чего выделяют ряд геохимических комплексов.
Для грубых терригенных осадков кларки концентрации близки к единице. В
мелкозернистых породах кларки урана значительно повышаются. Сильно влияет
на содержание урана в осадочных породах органическое вещество, однако
четкой связи не наблюдается. Низкое содержание урана характерно для
известняков и мергелей, исключение составляют битуминозные разновидности
этих пород. Самые низкие содержания урана отмечены в ангидритах и каменных
солях.
Изучение геохимии живого вещества показывает, что организмы не
концентрируют уран. Однако отжившие свой срок организмы на различных
стадиях диагенеза способны накапливать радиоактивный
элемент до промышленных концентраций. Что они и делают при наличии вод с
окислительной обстановкой, которая способствует миграции урана. В данных
породах накопление урана связано с наложенными процессами.
Вместе с тем распространены предположительно первично ураноносные
углеродисто-кремнистые и углеродо-глинистые сланцы. Максимальные содержания
урана достигают 0.03%. Обогащенные прослои сложены углеродистыми сланцами
обогащенные пиритом и фосфоритами. В не метаморфизованых углистых сланцах
первичных урановых минералов не обнаружено. В качестве обогащаемых ураном
выделяют фосфориты, в которых содержание урана возрастает с повышением
содержания фосфора. Фосфаты часто представлены франколитом (Са5(PO4,CO3)3F.
Предположительно четырехвалентный уран изоморфно замещает в нем кальций.
Однако имеются экспериментальные данные говорящее о значительной сорбции,
видимо уранила, фосфатным веществом.
3. Изоморфизм.
Изоморфизм -процесс при котором один ион замещает другой. Это возможно
когда:
1 колебание ионных радиусов не превышает более
15% при нормальных температурах.
2 Поляризация этих ионов должна быть одинаковой.
В изоморфизме с ураном уличены Th4+, Ce4+, Zr4+, Hf4+,TR3+,Y3+, Sc3+,
Ca2+. Причем UO2-ThO2-Ceo2 способны
замещать друг друга в неограниченных колличествах. В изоморфизме по
видемому может участвовать только четырехвалентный уран, так как у ионов
шестивалентного урана слишком большой ионный радиус, а из-за высокой
активности металлического урана в природе не обнаружено.
Уран в различных геологических процессах.
Не смотря на сравнительно высокое содержание урана в магматических
горных породах он практически не образует промышленных концентраций. Как
уже отмечалось повышенные концентрации этого элемента отмечены в щелочных
породах. В Ловозерском массиве установлена следующая примерная схема
кристаллизации магмы: полевые шпаты, нефелин, эгирин, лампрофиллит,
эвдиалит, ферсманит, лопарит. По приведенной последовательности можно
предположить, что в щелочных расплавах первыми кристаллизуются минералы
содержащие ионы с меньшими валентностями. Причем чем выше концентрация
щелочей относительно концентрации высоковалентных катионов, тем сильнее
влияние этих щелочей на роль высоковалентных кватионов в
минералообразовании. Так появление титанн-цирконий-ниобий-силикатов
определяет начало вовлечение урана в магматическое минералообразование. На
этом этапе повышаются содержания урана в породообразующих минералах. При
повышеной щелочности относительно концентрации Al3+,Fe3+,Ti4+, циркон и
торит оразоватся не могут, в результате проявляются ангидридные свойства
циркония и кристаллизуется эвдиалит (Na,Ca)6Zr[Si6O18](Cl,OH), это также
справедливо и для урана. По силе основности был составлен ряд определяющий
вовлечение указаных элементов в состав породообразующих минералов.
На основе изученных данных уран уличен в корреляционной связи с
относительным содержанием щелочей . Эта корреляция не имеет прямой
зависимости ,а подчиняется пропорциональной связи со степенью агпаитности
пород, отражающей соотношения в магматическом расплаве оснований с
кислотными остатками.
В ураноносных пегматитах концентрация редкоземельных элементов
превышает в 50-80 раз соответствующие кларки .Для пегматитов характерно
разделение этих элементов на две группы
| | скачать работу |
Другие рефераты
|