Вторично-ионная масса спектрометрия
Другие рефераты
Калужский Филиал
Московского Государственного
Технического Университета
им. Н. Э. Баумана
Кафедра Материаловедения и Материалов Электронной Техники
КУРСОВАЯ РАБОТА
по курсу МИМ и КЭТ
на тему:
“Вторично-ионная
масс-спектрометрия“
выполнил: студент гр. ФТМ—81
Тимофеев А. Ю.
проверил:
Леднева Ф. И.
г. Калуга
1997 год.
Содержание
Введение 3
Взаимодействие ионов с веществом 3
Вторично-ионная эмиссия 5
Оборудование ВИМС. 8
Принцип действия установок. 9
Установки, не обеспечивающие анализа распределения частиц по поверхности
10
Установки, позволяющие получать сведения о распределении
11
элемента по поверхности, со сканирующим ионным зондом
Установки с прямым изображением 11
Порог чувствительности 12
Анализ следов элементов
14
Ионное изображение
16
Требования к первичному ионному пучку 17
Масс-спектрометрический анализ нейтральных 18
распыленных частиц
Количественный анализ 19
Глубинные профили концентрации элементов 22
Приборные факторы, влияющие на разрешение 23
по глубине при измерении профилей концентрации
Влияние ионно-матричных эффектов на разрешение 25
по глубине при измерении профилей концентрации
Применения 26
Исследование поверхности 26
Глубинные профили концентрации
27
Распределение частиц по поверхности, 27
микроанализ и объемный анализ
Заключение 27
Список литературы 29
Введение
Возможности получения сведений о составе внешнего атомного слоя
твердого тела значительно расширялись всвязи с разработкой и
усовершенствованием метода вторично-ионной масс-спектрометрии (ВИМС) и
других методов. Большинство таких методов близки к тому, чтобы
анализировать саму поверхность, поскольку основная информация о составе
материала поступает из его приповерхностной области толщиной порядка 10А, а
чувствительность всех таких методов достаточна для обнаружения малых долей
моноатомного слоя большинства элементов.
Взаимодействие быстрых ионов с твердым телом приводит к выбиванию
атомов и молекул материала как в нейтральном, так и в заряженном состоянии.
На таком явлении сравнительного эффективного образования заряженных частиц
(вторичных ионов) и на принципе высокочувствительных масс-
спектрометрических измерениях и основан метод ВИМС. Хотя у него, как у
любого другого метода, имеются свои недостатки, только он один дает столь
широкие возможности исследования и поверхности, и объема твердого тела в
одном приборе. Наиболее важными характерными особенностями метода, которые
вызывают повышенный интерес к нему, являются очень низкий порог
чувствительности для большинства элементов (меньше 10-4 моноатомного слоя),
измерение профилей концентрации малых количеств примесей с разрешение по
глубине меньше 50А, разрешение по поверхности порядка микрометра,
возможность изотопического анализа и обнаружение элементов с малыми
атомными номерами (H, Li, Be и т. д.)
Взаимодействие ионов с веществом
[pic]
Фиг.1. Виды взаимодействий ионов с твердым телом [2].
В этом разделе рассматривается поведение ионов высоких энергий (1 -
100 кэВ), попадающих на поверхность твердого тела. Фиг.1 иллюстрирует 10
разновидностей взаимодействия ионов с поверхностью [2]. Падающий ион может
обратно рассеиваться атомом или группой атомов бомбардируемого образца (1).
Процесс обратного рассеяния обычно приводит к отклонению траектории иона от
первоначального направления после столкновения и к обмену энергией между
ионом и атомом мишени. Обмен энергией может быть упругим и неупругим в
зависимости от типа взаимодействующих частиц и энергии иона.
Импульс иона может быть достаточно велик для того, чтобы сместить
поверхностный атом из положения, где он слабо связан с кристаллической
структурой образца, в положение, где связь оказывается сильнее (2). Этот
процесс называется атомной дислокацией. Ионы с более высокими энергиями
могут вызывать внутренние дислокации в толще образца (3). Если
соударяющиеся с поверхностью образца ионы передают настолько большой
импульс, что полностью освобождают от связей один или несколько атомов,
происходит физическое распыление (4). Ионы могут проникать в
кристаллическую решетку и захватываться там, израсходовав свою энергию
(ионная имплантация) (5) . В результате химических реакций ионов
с поверхностными атомами на поверхности образуются новые
химические соединения, причем самый верхний слой атомов может
оказаться в газообразном состоянии и испариться (химическое
распыление) (6). Бомбардирующие положительные ионы в результате
процессса оже-нейтрализации могут приобретать на поверхности
электроны и отражаться от нее в виде нейтральных атомов (7).
Ионы могут оказаться связанными с поверхностью образца
(адсорбированными) (8). При ионной бомбардировке металлических
поверхностей в определенных условиях возможно возникновение
вторичной электронной змиссии (9). Наконец, если поверхностные
атомы возбуждаются до ионизированных состояний и покидают
образец, имеет место вторичная ионная эмиссия (10).
Замедляясь, ион передает энергию твердому телу. При анализе процессов
потери энергии удобно различать два основных механизма: соударения с
электронами и соударения с ядрами.
Первый механизм состоит в том, что быстрый ион взаимодействует с
электронами кристаллической решетки, в результате чего возникают
возбуждение и ионизация атомов кристалла. Поскольку плотность электронов в
веществе мишени высока и такие столкновения многочисленны, этот процесс,
как и в случае потери энергии электронами, можно считать непрерывным .
В рамках второго механизма взаимодействие происходит между
экранированными зарядами ядер первичного иона и атомами мишени. Частота
таких столкновений ниже, поэтому их можно рассматривать как упругие
столкновения двух частиц. Ионы высоких энергий хорошо описываются
резерфордовским рассеянием, ионы средних энергий - экранированным
кулоновским рассеянием, однако при малых энергиях характер взаимодействия
становится более сложным.
Кроме перечисленных выше механизмов вклад в энергетические потери
дает обмен зарядами между движущимся ионом и атомом мишени. Этот процесс
наиболее эффективен, когда относительная скорость иона сравнима с
боровской скоростью электрона ( ~106 м/с) .
Таким образом, полные потери энергии - dЕ/dz можно
представить в виде суммы трех составляющих - ядерной, электронной и
обменной.
При малых энергиях ионов преобладает взаимодействие с ядрами, которое
приводит к появлению угловой расходимости пучка. При высоких энергиях
более существенными становятся столкновения с электронами. Справедливо
следующее эмпирическое правило: передача энергии кристаллической решетке
осуществляется в основном за счет ядерных столкновений при энергиях меньше
А кэВ, где А - атомный вес первичного иона. В промежуточном диапазоне
энергий вклад потерь, обусловленных обменом заряда, может возрастать
примерно до 10% от полных потерь. Зависимость энергетических потерь от
энергии первичного иона показана на фиг.2.
[pic]
Фиг.2. Зависимость энергетических потерь иона от энергии [2].
[pic]
Фиг.3. Схематическое представление взаимодействия ионов с мишенью [2].
Неупругие взаимодействия с электронами мишени вызывают вторичную
электронную эмиссию, характеристическое рентгеновское излучение и
испускание световых квантов. Упругие взаимодействия приводят к смещению
атомов кристаллической решетки, появлению дефектов и поверхностному
распылению. Эти процессы схематически проиллюстрированы на фиг. 3.
Энергетический спектр рассеянных твердотельной мишенью ионов с
начальной энергией Е0 схематически представлен на фиг.4. Здесь видны
широкий низкоэнергетический (10 - 30 эВ) горб, соответствующий испусканию
нейтральных атомов (распыленные атомы), и высокоэнергетический горб,
расположенный вблизи энергии первичного иона Е0 (упругорассеянные ионы).
Вторично-ионная эмиссия
Основные физические и приборные параметры, характеризующие
метод ВИМС, охватываю
| | скачать работу |
Другие рефераты
|