Эволюция вселенной
Другие рефераты
Введение.
Проблема зарождения и существования Вселенной во все времена
занимала человечество. Небо, которое было доступно для его обозрения,
очень его интересовало. Недаром астрономия считается одной из самых древних
наук. Для изучения вселенной вцелом, в астрономии появилась новая наука-
космология.
По определению А.Л. Зеяьманова (1913-1987) космология - это
совокупность накопленных теоретических положений о строении вещества и
структуре Вселенной, как цельного объекта, так и отдельные научные знания
охваченного астрономическими наблюдениями мира как части Вселенной.
Выводы космологии называются моделями происхождения и развития
Вселенной. Почему моделями? Дело в том, что одним из основных принципов
современного естествознания является возможность проведения управляемого
эксперимента над изучаемым объектом. Только если можно провести любое
количество экспериментов и все они приводят к одному результату, то на
основе этих экспериментов делают заключение о наличии закона, которому
подчиняется функционирование данного объекта. Лишь в этом случае результат
считается достоверным с научной точки зрения.
К Вселенной это методологическое правило остается неприменимым.
Наука формулирует универсальные законы, а Вселенная уникальна. Это
противоречие, которое требует считать все заключения о происхождении и
развитии Вселенной не законами, а лишь моделями, т. е. возможными
вариантами объяснения.
Теории ХХ в. о происхождении Вселенной.
Наиболее общепринятой в космологии является модель однородной
изотропной нестационарной горячей расширяющейся Вселенной, построенная на
основе общей теории относительности и релятивистской теории тяготения,
созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два
предположения: 1) свойства Вселенной одинаковы во всех ее точках
(однородность) и направления (изотропность); 2) наилучшим известным
описанием гравитационного поля являются уравнения Эйнштейна. Из этого
следует так называемая кривизна пространства и связь, кривизны с плотностью
массы. Космологию, основанную на этих постулатах называют релятивистской.
Важным пунктом данной модели является ее нестационарность, это означает,
что Вселенная не может находиться в статическом, неизменном
состоянии.
Новый этап в развитии релятивистской космологии был связан с
исследованиями русского ученого А.А. Фридмана (1888-1925), который
математически доказал идею саморазвивающейся Вселенной. Работа А.А.Фридмана
в корне изменила основоположения прежнего научного мировоззрения. По его
утверждению космологические начальные условия образования Вселенной были
сингулярными. Разъясняя характер эволюции Вселенной, расширяющейся начиная
с сингулярного состояния, Фридман особо выделял два случая:
а) радиус кривизны Вселенной с течением времени постоянно возрастает,
начиная с нулевого значения;
б) радиус кривизны меняется периодически: Вселенная сжимается в точку (в
ничто, сингулярное состояние), затем снова из точки, доводит свой радиус до
некоторого значения, далее опять, уменьшая радиус своей кривизны,
обращается в точку, и т.д.
На этот вывод не было обращено внимания вплоть до открытия
американским астрономом Эдвином Хабблом в 1929 году так называемого
«красного смещения». Красное смещение — это понижение частот
электромагнитного излучения: в видимой части спектра линии смещаются к его
красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении
от нас какого-либо источника колебаний, воспринимаемая вами частота
колебаний уменьшается, а длина волны соответственно увеличивается. При
излучении происходит «покраснение», т. е. линии спектра сдвигаются в
сторону более длинных красных волн.
Так вот, для всех далеких источников света красное смещение было
зафиксировано, причем, чем дальше находился источник, тем в большей
степени. Красное смещение оказалось пропорционально расстоянию до
источника, что и подтверждает гипотезу об удалении их, т. е. о расширении
Метагалактики — видимой части Вселенной.
Составной частью модели расширяющейся Вселенной является
представление о Большом Взрыве, происшедшем где-то примерно 12 —18 млрд.
лет назад.
Джордж Лемер был первым, кто выдвинул концепцию «Большого взрыва»
из так называемого «первобытного атома» и последующего превращения его
осколков в звезды и галактики. Конечно, со стороны современного
астрофизического знания данная концепция представляет лишь исторический
интерес, но сама идея первоначального взрывоопасного движения космической
материи и ее последующего эволюционного развития неотъемлемой частью вошла
в современную научную картину мира.
Принципиально новый этап в развитии современной эволюционной
космологии связан с именем американского физика Г.А.Гамова (1904-1968),
благодаря которому в науку вошло понятие горячей Вселенной. Согласно
предложенной им модели «начала» эволюционирующей Вселенной «первоатом»
Леметра состоял из сильно сжатых нейтронов, плотность которых достигала
чудовищной величины - один кубический сантиметр первичного вещества весил
миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А.Гамова
образовался всоеобраэный космологический котел с температурой порядка трей
миллиардов градусов, где и произошел естественный синтез химических
элементов. Осколки первичного яйца - отдельные нейтроны затем распались на
электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися
нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30
минут после «Большого Взрыва.
Горячая модель представляла собой конкретную астрофизическую
гипотезу, указывающую пути опытной проверки своих следствий. Гамов
предсказал существование в настоящее время остатков теплового излучения
первичной горячей плазмы, а его сотрудники Дльфер и Герман еще в 1948 г.
довольно точно рассчитали величину температуры этого остаточного излучения
уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать
удовлетворительное объяснение естественному образованию и распостраненности
тяжелых химических элементов во Вселенной, что явилось причиной
скептического отношения к его теории со стороны специалистов. Как
оказалось, предложенный механизм ядерного синтеза не мог обеспечить
возникновение наблюдаемого ныне количества этих элементов.
Ученые стали искать иные физические модели «начала». В 1961 году
академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно
которой первоначальная плазма состояла из смеси холодных ( с температурой
ниже абсолютного нуля) вырожденных частиц - протонов, электронов и
нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич
произвели сравнительный анализ двух противоположных моделей космологических
начальных условий - горячей и холодной и указали путь опытной проверки и
выбора одной из них. Было предложено с помощью изучения спектра излучений
звезд и космических радиоисточников попытаться обнаружить остатки
первичного излучения. Открытие остатков первичного излучения подтверждало
бы правильность горячей модели, а если таковые не существуют, то это будет
свидетельствовать в пользу холодной модели.
В конце 60-х годов группа американских ученых во главе с Р. Дикке
приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л.
Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие
микроволнового фона (это официальное название реликтового излучения) на
волне 7,35 см.
Примечательно, что будущие лауреаты Нобелевском премии не искали
реликтовое излучение, а в основном занимались отладкой радиоантенны, для
работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они
при различных положениях антенны регистрировали космическое излучение,
природа которого первоначально была им не ясна. Этим излучением и оказалось
реликтовое излучение.
Таким образом, в результате астрономических наблюдений последнего
времени удалось однозначно решить принципиальный вопрос о характере
физических условий, господствовавших на ранних стадиях космической
эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное,
однако, не означает, что подтвердились все теоретические утверждения и
выводы космологической концепции Гамова. Из двух исходных гипотез теории -
о нейтронном составе «космического яйца» и горячем состоянии молодой
Вселенной - проверку временем «выдержала «только «последняя, указывающая на
количественное преобладание излучения над веществом у истоков ныне
наблюдаемого космологического расширения.
Современная наука о происхождении Вселенной.
На нынешней стадии развития физической космологии на передний план
выдвинулась задача создания тепловой истории Вселенной, в особенности
сценария образования крупномасштабной структуры Вселенной. Последние
теоретические изыскания физиков велись в направлении следующей
фундаментальной идеи: в основе всех известных типов физических
взаимодействий лежит одно универсальное взаимодействие; электромагнитное,
слабое, сильное и гравитационное взаимодействия
| | скачать работу |
Другие рефераты
|