Геометрия в пространстве
Другие рефераты
В своей деятельности человеку повсюду приходится сталкиваться с
необходимостью изучать форму, размеры, взаимное расположение
пространственных фигур. Подобные задачи решают и астрономы, имеющие дело с
самыми большими масштабами, и физики, исследующие структуру атомов и
молекул. Раздел геометрии, в котором изучаются такие задачи, называется
стереометрией (от греческого «стереос»- объемный, пространственный).
Может показаться парадоксальным, но фактически понятие «плоскость» в
планиметрии- геометрии на плоскости - не нужно. Ведь если мы, например,
говорим, что в плоскости многоугольника дана точка, мы тем самым
подразумеваем, что такие точки существуют и вне этой плоскости. В
планиметрии такое предположение излишние: все происходит в одной и той же
единственной плоскости. В стереометрии нам приходится иметь дело уже с
несколькими плоскостями. В каждой из них сохраняют свою силу все известные
из планиметрии определения и теоремы, относящиеся к точкам, прямым,
расстояниям и т.д., но свойства самих плоскостей необходимо описывать
отдельно.
План.
I. Основные аксиомы стереометрии--------------- 4 II. Прямые,
плоскости, параллельность------------ 6
III. Изображение пространственных фигур------ 7 IV. Перпендикулярность.
Углы. Расстояния----- 12 V. Несколько задач на построение, воображение,
изображение и соображение------------------------ 17
I.Основные аксиомы стереометрии
Итак, в стереометрии к основным понятиям планиметрии добавляется еще
одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения»
плоскостей с другими объектами геометрии. Таких аксиом три.
Первая- аксиома выхода в пространство - придает «театру геометрических
действий» новое, третье измерение:
. Имеется четыре точки, не лежащие в одной плоскости (рис. 1)
Таким образом, не все точки находятся в одной плоскости. Но этого
недостаточно. Нужно, чтобы различных плоскостей было бесконечно много. Это
обеспечивается второй аксиомой- аксиомой плоскости:
. Через любые три точки проходит плоскость.
С третьей аксиомой мы сталкиваемся, когда складываем фигурки из
бумаги: все знают, что, образующиеся при этом линии сгиба - прямые.
Аксиома пересечения плоскостей звучит так:
. Если две плоскости имеют общую точку, то их пересечение есть
прямая.
. (рис.2)
Отсюда следует: если три точки лежат на одной прямой, то проходящая
через них плоскость единственная.
Действительно, если через какие- то три точки проходят две разные
плоскости, то через эти точки можно провести прямую, а именно прямую, по
которой плоскости пересекаются. Отметим, что последнее свойство само
нередко включается в аксиомы.
Третья аксиома играет очень существенную и неочевидную с первого
взгляда роль в стереометрии: она делает пространство в точности трехмерным,
потому что в пространствах размерности четыре и выше плоскости могут
пересекаться по одной точке. К трем указанным так же присоединяются
планометрические аксиомы, переосмысленные и подправленные с учетом того,
что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например,
аксиому прямой - через две различные точки можно провести одну и только
одну прямую - переносят в стереометрию дословно, но только она уже
распространяется на две точки пространства.
В качестве следствия выведем прямо из аксиом одно полезное следствие:
прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой
плоскости.
Пусть прямая l проходит через точки А и В плоскости ? (рис. 3). Вне
плоскости ? есть хотя бы одна точка С (по аксиоме выхода в пространство). В
соответствии с аксиомой плоскости через А,В и С можно провести плоскость ?.
Она отлична от плоскости ?, так как содержит С и имеет с ? две общие точки.
Значит, ? пересекается с ? по прямой, которой, как и l, принадлежат А, В.
По аксиоме прямой, линия пересечения плоскостей совпадает с l. Но эта линия
лежит в плоскости ?, что и требовалось доказать.
Путем несложных доказательств мы находим, что:
. На каждой плоскости выполняются все утвержде-ния планиметрии.
II. Прямые, плоскости, параллельность.
Уже такое основное понятие, как параллельность прямых, нуждается в
новом определении:
две прямые в пространстве называются парал-лельнылт, если они лежат в одной
плоскости и не имеют общих точек. Так что не попадайтесь в одну из
излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через
две параллельные прямые можно провести плоскость: это верно по определению
параллельности прямых! Знаменитую планиметрическую аксиому о единственности
параллельной включают и в аксиомы стереометрии, а с её помощью доказывают
главное свойство параллельных прямых в пространстве:
. Через точку, не лежащую на прямой, можно провести одну и только
одну прямую параллельно данной.
Сохраняется и другое важное свойство параллельных прямых, называемое
транзитивностью параллельности:
. Если две прямые а и b параллельны третьей прямой с, то они
параллельны друг другу.
Но доказать это свойство в стереометрии сложнее. На плоскости
непараллельные прямые обязаны пересекаться и потому не могут быть
одновременно параллельны третьей (иначе нарушается аксиома параллельных). В
пространстве существуют непараллельные и притом непересекающиеся прямые —
если они лежат в разных плоскостях. О таких прямых говорят, что они
скрещиваются.
На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD —
параллельны, а АВ и В№С№ — скрещиваются. В дальнейшем мы часто будем
прибегать к помощи куба, чтобы иллюстрировать понятия и факты стереометрии.
Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем
выводить и другие его свойства. Например, можно утверждать, что прямая АВ
параллельна C№D№, потому что обе они параллельны общей стороне CD
содержащих их квадратов.
В стереометрии отношение параллельности рассматривается и для
плоскостей: две плоскости или прямая и плоскость параллельны, если они не
имеют общих точек. Прямую и плоскость удобно считать параллельными и в том
случае, когда лежит в плоскости. Для плоскостей и прямых справедливы
теоремы о транзитивности:
. Если две плоскости параллельны третьей плоскости, то они
параллельны между собой.
. Если прямая и плоскость параллельны некоторой прямой( или
плоскости), то они параллельны друг другу.
Наиболее важный частный случай второй теоремы- признак параллельности
прямой и плоскости:
. Прямая параллельна плоскости, если она параллельна некоторой
прямой в этой плоскости.
А вот признак параллельности плоскостей:
. Если две пересекающиеся прямые в одной плоскости соответственно
параллельны двум пересекающимся прямым в другой плоскости, то и
плоскости параллельны.
Часто используется и такая простая теорема:
. Прямые, по которым две параллельные плоскости пересекаются
третьей, параллельны друг другу.
Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой
и плоскости следует, например, что прямая А№В№ параллельна плоскости АВСD
(так как она параллельна прямой АВ в этой плоскости), а противоположные
грани куба, в частности А№В№С№D№ и ABCD, параллельны по признаку
параллельности плоскостей: прямые A№B№ и B№С№ в одной грани соответственно
параллельны прямым АВ и ВС в другой. И чуть менее простой пример.
Плоскость, содержащая параллельные прямые AA№ и СС№, пересекают
параллельные плоскости АВСD и A№B№C№D№ по прямым АС и А№С№, значит, эти
прямые параллельны: аналогично, параллельные прямые В№С и А№D.
Следовательно, параллельные плоскости АВ№С и А№DC, пересекающие куб по
треугольникам.
III. Изображение пространственных фигур.
Есть такой афоризм «Геометрия — это искусство правильно
рассуждать на неправильном чертеже». Действительно, если вернуться к
изложенным выше рассуждениям, то окажется:
единственная польза, которую мы извлекли из сопровождавшего их рисунка
куба, состоит в том, что он сэкономил нам место на объяснении обозначений.
С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя,
очевидно, представленное на нём «нечто» не только не куб, но и не
многогранник. И всё же в приведённом афоризме заключена лишь часть правды.
Ведь прежде, чем «рассуждать» — излагать готовое доказательство, надо его
придумать. А для этого нужно ясно представлять себе заданную фигуру,
соотношения между её элементами. Выработать такое представление помогает
хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж
может стать не просто иллюстрацией, а основой решения задачи.
Художник (вернее, художник-реалист) нарисует наш куб таким, каким мы
его видим (рис. 5, б), т. е. в перспективе, или центральной проекции. При
центральной проекции из точки О (центр проекции) на плоскость а
произвольная точка Х изображается точкой X', в которой а пересекается с
прямой ОХ (рис. 6). Центральная проекция сохраняет прямолинейное
расположение точек, но, как правило, переводит параллельные прямые в
пересекающиеся, не говоря уже о
| | скачать работу |
Другие рефераты
|