Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения



 Другие рефераты
Интеграл Пуассона Интеграл и его свойства Интегрирование линейного дифференциального уравнения с помощью степенных рядов Интересные примеры в метрических пространствах

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно
изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из
конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости  Z задана кусочно-
гладкая кривая С длиной  ?, используя  параметрическое задание кривой С
зададим ?(t) и ? (t), где ? и ? являются кусочно-гладкими кривыми от
действительной  переменной t. Пусть ?<= t<=?, причем ? и ? могут быть
бесконечными числами .
 Пусть ? и ? удовлетворяют условию : [?‘(t)]2 + [?‘(t)]2 ? 0.  Очевидно,
что задание координат ? =?(t) и ?’? (t), равносильно заданию комплексной
функции ? (t)= ? (t) + i?(t).
Пусть в каждой точке ? (t)  кривой С определена некоторая функция f (? ).
Разобьем кривую С на n – частичных дуг точками деления ?0 , ?1 , ?2 , …,  ?
n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t
i+1 > t i.
?? i =? i – ? i-1. Составим интегрируемую функцию S = Sf (?*)?? i .  (1)

где ?*– производная точки этой дуги.
Если при стремлении max |?? i |> 0 существует предел частных сумм не
зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора
точек ? i , то этот  предел называется интегралом от функции f (? ) по
кривой С.
[pic]                            (2)
f (?i* ) = u (Pi*) + iv (Pi*)      (3)
где ?? i = ?? (t) + i??(t)     (? (t) и ?(t) - действительные числа)
Подставив (3) в (1) получим :

           (4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных
интегралов действительной переменной. Переходя в (4) к пределу при ?? и ??
> 0 и предполагая, что данные пределы существуют, получаем :

                                                            (5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а
тем самым и для существования интеграла (2) достаточно кусочной
непрерывности функций u и v. Это означает, что (2) существует и в случае
неаналитичности функции f (? ).
Сформулируем некоторые свойства интеграла от функции комплексной
переменной. Из равенства (5) следуют свойства :



О ограниченности интеграла.
При этом z = ? (? ).

   7.) Пусть Cp – окружность радиуса ?, с центром в точке Z0. Обход вокруг
контура Cp осуществляется против часовой стрелки. Cp : ? = Z0 + ??ei?,    0
? ? ? 2?,      d? = i??ei? d? .
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а
интеграл по замкнутому контуру – контурным интегралом.

                                ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором
внутренняя область, ограниченная данным замкнутым контуром остается слева
от направления движения :
Для действительной переменной имеют место формулы Грина. Известно, что если
функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной
области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-
го порядка непрерывны в G, то имеет место формула Грина:

        ( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z),
тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G
, равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(? ) аналитическая всюду, то  U(x, y), V(x, y) - непрерывны в
области, ограниченной этим контуром и при этом выполняются условия Коши-
Римана. Используя свойство криволинейных интегралов:
Аналогично :
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и
оба криволинейных интеграла равны нулю. Отсюда :

ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(?) является
аналитической в односвязной области G, ограниченной кусочно-гладким
контуром C, и непрерывна в замкнутой области G, то интеграл от такой
функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (?) является аналитической функцией в многосвязной области G,
ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см.
рис.). Пусть f (?) непрерывна в замкнутой области G, тогда :

, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn.
Причем обход кривой С осуществляется в положительном направлении.



                          Неопределенный интеграл.
Следствием формулы Коши является следующее положение : пусть f(Z)
аналитична в односвязной области G, зафиксируем в этой области точку Z0 и
обозначим:
 интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0
и Z, в силу теории Коши этот интеграл не зависит от выбора кривой
интегрирования и является однозначной функцией  Ф(Z). Аналитическая функция
Ф(Z) называется первообразной от функции f(Z) в области G, если в этой
области имеет место равенство : Ф' (Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным
интегралом от комплексной функции f(Z). Так же как и в случае с функцией
действительного переменного имеет место равенство :

                  ( 9)


Это аналог формулы Ньютона-Лейбница.

                     Интеграл Коши. Вывод формулы Коши.
Ранее была сформулирована теорема Коши, которая позволяет установить связь
между значениями аналитической функции во внутренних точках области ее
аналитичности и граничными значениями этой функции.
Пусть функция f(Z) – аналитическая функция в односвязной области G,
ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0
и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим
вспомогательную функцию ? (Z). Эта функция аналитична в области G всюду,
кроме точки Z=Z0. Проведем контур ? с достаточным радиусом, ограничивающий
точку Z0, тогда функция будет аналитична в некоторой двусвязной области,
заключенной между контурами Г и ?. Согласно теореме Коши имеем :

По свойствам интегралов :


          (2 )
Так как левый интеграл в (2) не зависит от выбора контура интегрирования,
то и правый интеграл также не будет зависеть от выбора контура. Выберем в
качестве ? окружность ?? с радиусом ? . Тогда:


           (3)

Уравнение окружности ?? : ? = Z0 + ?ei?         (4)
Подставив (4) в (3) получим :



       ( 5 )



            ( 6 )



       (7)


Устремим  ??> 0, т.е. ?> 0.
Тогда т.к. функция  f(?) аналитична в точке Z=Z0 и всюду в области G, а
следовательно и непрерывна в G, то для всех ?>0 существует ?>0, что для
всех ? из ?–окрестности точки Z0 выполняется | f(?) – f(Z0) | < ?.


               (8)


Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5)  и выражая f(Z0) имеем :


            (9)

Это интеграл Коши.
Интеграл, стоящий в (9) в правой части выражает значение аналитической
функции f(?) в некоторой точке Z0 через ее значение на произвольном контуре
? , лежащем в области аналитичности функции f(?) и содержащем точку Z0
внутри.
Очевидно, что если бы функция f(?) была аналитична и в точках контура С, то
в качестве границы ? в формуле (9) можно было использовать контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной
области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G
имеет смысл для любого положения Z0 на комплексной плоскости при условии,
что эта точка есть внутренней точкой области Г. При этом если Z0
принадлежит области с границей Г, то значение интеграла равно (9), а если
т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 ? Г указанный интеграл не существует.

                     Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-
х комплексных переменных : переменной интегрирования ? и Z0. Таким образом
интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в
качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных ? (Z, ? ), причем   Z= x +
iy  в точке, принадлежащей некоторой комплексной плоскости G. ?= ?+ i?  ?
С.  (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция ? (Z, ? )
 удовлетворяет условиям : 1) Функция для всех значений ? ?  С является
аналитической в области G. 2) Функция ? (Z, ? )  и ее производная ??/??
являются непрерывными функциями по совокупности переменных Z и ? при
произвольном изменении области G и переменных на кривой С. Очевидно, что
при сделанных предположениях :
Интеграл существует и является функцией комплексной переменной. Справедлива
формула :

[pic]                              (2)

Эта формула устанавливает возможность вычисления производной от исходного
интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА.  Пусть f(Z) является аналитической функцией в области G и
непрерывной в области G (G включая граничные точки ), тогда во внутренних
точках области G существует производная любого порядка от функции f(Z)
причем для ее вычисления имеет место формула :


 (3)

С помощью формулы (3) можно получить производную любого порядка от
аналитической функции  f (Z) в любой точке Z области ее аналитичности. Для
доказательства этой теоремы используется формула (2) и соответственные
рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от
этой функции по любому замкнутому контуру, целиком принадлежащему  G равен
0. Тогда функция f (Z) является аналитической функцией в области G. Эта
теорема обобщается и на случай многосвязной области G.

             Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными
(до n-го порядка ), то существует разложение этой функции в ряд Тейлора :
[pic]
Итак, если задана функция f (z) комплексного переменного, причем f (z)
непрерывная вместе с производными до n-го порядка, то:
[pic]    
12
скачать работу


 Другие рефераты
Развитие оценочной деятельности учителя и учащихся как педагогическая проблема
Приближенное решение уравнений
Анды
Денежная масса


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ