Полиамиды
Другие рефераты
Московский Институт Электронной Техники
(Технический Университет)
Курсовая работа
по теме:
«Полиамиды»
Выполнил:
студент гр. ЭТМ-23
Шаров Н.А.
Москва
2000
Содержание:
Полимеры 3
Классификация полимеров 3
Свойства и важнейшие характеристики полимеров 4
Растворимость сульфосодержащих полиамидов 6
Характеристики некоторых полиамидов 7
ПОЛИАМИД ПА6-ЛТ-СВУ4 7
ПОЛИАМИД ПА6-ЛПО-Т18 8
ПОЛИАМИД ПА66-1А 9
ПОЛИАМИД ПА66-2 9
ПОЛИАМИД ПА66-1-Л-СВ30 10
ПОЛИАМИД ПА66-ЛТО-СВ30 10
ПОЛИАМИД ПА610-Л 11
ПОЛИАМИД ПА610-Л-СВ30 12
ПОЛИАМИД ПА610-Л-Т20 12
Примеры получения полиамидов 13
Список используемой литературы: 15
Полиамиды - высокомолекулярные соединения, относящиеся к гетероцепным
полимерам, в основной цепи которых содержатся амидные связи, посредством
которых соединены между собой мономерные остатки. Примером полиамидов
является найлон. Поэтому рассмотрим полиамиды на примерах полимерах и
найлона.
Полимеры
Полимеры - химические соединения с высокой мол. массой (от нескольких
тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из
большого числа повторяющихся группировок (мономерных звеньев). Атомы,
входящие в состав макромолекул, соединены друг с другом силами главных и
(или) координационных валентностей.
Классификация полимеров
По происхождению полимеры делятся на природные (биополимеры), например
белки, нуклеиновые кислоты, смолы природные, и синтетические, например
полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные
группы могут располагаться в макромолекуле в виде: открытой цепи или
вытянутой в линию последовательности циклов (линейные полимеры, например
каучук натуральный); цепи с разветвлением (разветвленные полимеры, например
амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые
эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых
мономерных звеньев, называются гомополимерами (например поливинилхлорид,
поликапроамид, целлюлоза).
Макромолекулы одного и того же химического состава могут быть построены
из звеньев различной пространственной конфигурации. Если макромолекулы
состоят из одинаковых стереоизомеров или из различных стереоизомеров,
чередующихся в цепи в определенной периодичности, полимеры называются
стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных
звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа
образуют достаточно длинные непрерывные последовательности, сменяющие друг
друга в пределах макромолекулы, называются блоксополимерами. К внутренним
(неконцевым) звеньям макромолекулы одного химического строения могут быть
присоединены одна или несколько цепей другого строения. Такие сополимеры
называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют
достаточно длинные непрерывные последовательности, сменяющие друг друга в
пределах одной макромолекулы, называются стереоблоксополимерами. В
зависимости от состава основной (главной) цепи полимеры, делят на:
гетероцепные, в основной цепи которых содержатся атомы различных элементов,
чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи
которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее
распространены карбоцепные полимеры, главные цепи которых состоят только из
атомов углерода, например полиэтилен, полиметилметакрилат,
политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры
(полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные
смолы, белки, некоторые кремнийорганические полимеры. Полимеры,
макромолекулы которых наряду с углеводородными группами содержат атомы
неорганогенных элементов, называются элементоорганическими. Отдельную
группу полимеров образуют неорганические полимеры, например пластическая
сера, полифосфонитрилхлорид.
Свойства и важнейшие характеристики полимеров
Линейные полимеры обладают специфическим комплексом физико-химических и
механических свойств. Важнейшие из этих свойств: способность образовывать
высокопрочные анизотропные высокоориентированные волокна и пленки ,
способность к большим, длительно развивающимся обратимым деформациям;
способность в высокоэластичном состоянии набухать перед растворением;
высокая вязкость растворов. Этот комплекс свойств обусловлен высокой
молекулярной массой, цепным строением, а также гибкостью макромолекул. При
переходе от линейных цепей к разветвленным, редким трехмерным сеткам и,
наконец, к густым сетчатым структурам этот комплекс свойств становится всё
менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и
неспособны к высокоэластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях.
Необходимое условие кристаллизации - регулярность достаточно длинных
участков макромолекулы. В кристаллических полимерах возможно возникновение
разнообразных надмолекулярных структур (фибрилл, сферолитов,
монокристаллов, тип которых во многом определяет свойства полимерного
материала. Надмолекулярные структуры в незакристаллизованных (аморфных)
полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических
состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с
низкой (ниже комнатной) температурой перехода из стеклообразного в
высокоэластичное состояние называются эластомерами, с высокой - пластиками.
В зависимости от химического состава, строения и взаимного расположения
макромолекул свойства полимеры могут меняться в очень широких пределах.
Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при
температуре около 20 °С - эластичный материал, который при температуре -60
°С переходит в стеклообразное состояние; полиметилметакрилат, построенный
из более жестких цепей, при температуре около 20 °С - твердый
стеклообразный продукт, переходящий в высокоэластичное состояние лишь при
100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными
межмолекулярными водородными связями, вообще не может существовать в
высокоэластичном состоянии до температуры ее разложения. Большие различия в
свойствах полимеров могут наблюдаться даже в том случае, если различия в
строении макромолекул на первый взгляд и невелики. Так, стереорегулярный
полистирол - кристаллическое вещество с температурой плавления около 235
°С, а нестереорегулярный вообще не способен кристаллизоваться и
размягчается при температуре около 80 °С.
Полимеры могут вступать в следующие основные типы реакций: образование
химических связей между макромолекулами (так называемое сшивание), например
при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные,
более короткие фрагменты, реакции боковых функциональных групп полимеров с
низкомолекулярными веществами, не затрагивающие основную цепь (так
называемые полимераналогичные превращения); внутримолекулярные реакции,
протекающие между функциональными группами одной макромолекулы, например
внутримолекулярная циклизация. Сшивание часто протекает одновременно с
деструкцией. Примером полимераналогичных превращений может служить омыление
поливтилацетата, приводящее к образованию поливинилового спирта. Скорость
реакций полимеров с низкомолекулярными веществами часто лимитируется
скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется
в случае сшитых полимеров. Скорость взаимодействия макромолекул с
низкомолекулярными веществами часто существенно зависит от природы и
расположения соседних звеньев относительно реагирующего звена. Это же
относится и к внутримолекулярным реакциям между функциональными группами,
принадлежащими одной цепи.
Некоторые свойства полимеров, например растворимость, способность к
вязкому течению, стабильность, очень чувствительны к действию небольших
количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы
превратить линейный полимер из растворимого в полностью нерастворимый,
достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная
масса и молекулярно-массовое распределение, степень разветвленности и
гибкости макромолекул, стереорегулярность и другие. Свойства полимеров
существенно зависят от этих характеристик.
Растворимость сульфосодержащих полиамидов
Большинство ароматических полиамидов растворяется в ограниченном числе
растворителей, что заметно сужает области их применения и усложняет
технологию переработки. Введение в полиамидную цепь сульфогрупп сказывается
на растворимости полимеров [4]. При определенном содержании сульфогрупп
ароматические полиамиды приобретают способность растворяться в воде. Для
| | скачать работу |
Другие рефераты
|