Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Аркфункции



 Другие рефераты
Анализ снизу вверх и сверху вниз Аппроксимация функций Адаптивная система компенсации неизвестного запаздывания Билеты по аналитической геометрии

Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции. Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики. Решение: Рассмотрим 1-ю функцию y = arcsin(1/x) Д(f): | 1/x | ? 1 , | x | ? 1 , ( - ? ; -1 ] U [ 1; + ? ) Функция нечетная ( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;?/2] ) Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-?/2; ?/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x) Д(f): ( - ? ; -1 ] U [ 1; + ? ) Пример №2. Исследовать функцию y=arccos(x2). Решение: Д(f): [-1;1] Четная f(x) убывает на пр. [0;1] f(x) возрастает на пр. [-1;0] Пример №3. Исследовать функцию y=arccos2(x). Решение: Пусть z = arccos(x), тогда y = z2 f(z) убывает на пр. [-1;1] от ? до 0. f(y) убывает на пр. [-1;1] от ?2 до 0. Пример №4. Исследовать функцию y=arctg(1/(x2-1)) Решение: Д(f): ( - ? ; -1 ) U ( -1; 1 ) U ( 1; +? ) Т.к. функция четная, то достаточно исследовать функцию на двух промежутках: [ 0 ; 1 ) и ( 1 ; +? ) |X |0 |< x |1 |< x |+? | | | |< | |< | | |u=1/(x2-1|-1 |? |+ ? |? |0 | |) | | |- ? | | | |y=arctg(u|- |? |?/2 |? |0 | |) |?/4 | |- ?/2| | | Тригонометрические операции над аркфункциями Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой- либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение. В силу определения аркфункций: sin(arcsin(x)) = x , cos(arccos(x)) = x (справедливо только для x є [-1;1] ) tg(arctg(x)) = x , ctg(arcctg(x)) = x (справедливо при любых x ) Графическое различие между функциями, заданными формулами: y=x и y=sin(arcsin(x)) Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями. |Аргумент |arcsin(x) |arccos(x) |arctg(x) |arcctg(x) | | | | | | | |функция | | | | | |sin |sin(arcsin(x))=|[pic] |[pic] |[pic] | | |x | | | | |cos |[pic] |x |[pic] |[pic] | |tg |[pic] |[pic] |x |1 / x | |ctg |[pic] |[pic] |1 / x |x | Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже: 1. Т.к. cos2x + sin2x = 1 и ? = arcsin(x) [pic] [pic] Перед радикалом [pic]следует взять знак “+”, т.к. дуга [pic]принадлежит правой полуокружности (замкнутой) [pic], на которой косинус неотрицательный. Значит, имеем [pic] 2. Из тождества [pic]следует: [pic] 3. Имеем [pic] 4. [pic] Ниже приведены образцы выполнения различных преобразований посредством выведения формул. Пример №1. Преобразовать выражение [pic] Решение: Применяем формулу [pic], имеем: [pic] Пример №2. Подобным же образом устанавливается справедливость тождеств: [pic] [pic] Пример №3. Пользуясь ... [pic] Пример №4. Аналогично можно доказать следующие тождества: [pic] [pic] [pic] [pic] [pic] [pic] Пример №5. Положив в формулах [pic], и [pic] [pic], получим: [pic], [pic] Пример №6. Преобразуем [pic] Положив в формуле [pic], [pic] Получим: [pic] Перед радикалами взят знак “+”, т.к. дуга [pic]принадлежит I четверти, а потому левая часть неотрицательная. Соотношения между аркфункциями Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг. Теорема. При всех допустимых х имеют место тождества: [pic] [pic] Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов). Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности. Пусть, например, рассматривается дуга ?, заключенная в интервале (- ?/2; ?/2). Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга [pic]имеет синус, равный sin? и заключена, так же как и ?, в интервале (-?/2; ?/2), следовательно [pic] Аналогично можно дугу ? представить в виде арктангенса: [pic] А если бы дуга ? была заключена в интервале ( 0 ; ? ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса: [pic] Так, например: [pic] [pic] Аналогично: [pic] Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней). 1. Выражение [pic][pic]через арктангенс. Пусть [pic], тогда [pic] Дуга [pic], по определению арктангенса, имеет тангенс, равный [pic] и расположена в интервале (-?/2; ?/2). Дуга [pic]имеет тот же тангенс и расположена в том же интервале (-?/2; ?/2). Следовательно, [pic] (1) (в интервале ( -1 : 1 ) 2. Выражение [pic]через арксинус. Т.к. [pic], то [pic] (2) в интервале [pic] 3. Выражение арккосинуса через арккотангенс. Из равенства [pic]следует тождество [pic] (3) Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например, [pic] Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции. Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -?/2 до 0, либо промежутку от ?/2 до ? и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку. Так, например, дуга [pic] не может быть значением арксинуса. В этом случае [pic] Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях. 4. Выражение арксинуса через арккосинус. Пусть [pic], если [pic], то [pic]. Дуга имеет косинус, равный [pic], а поэтому [pic] При [pic]это равенство выполняться не может. В самом деле, в этом случае [pic], а для функции [pic]имеем: [pic] так как аргумент арккосинуса есть арифметический корень [pic], т.е. число неотрицательное. Расположение рассматриваемых дуг пояснено на рисунке: Х>0 X<0 При отрицательных значениях Х имеем Х<0, а при положительных X>0, и [pic] Таким образом, имеем окончательно: [pic]если [pic], (4) [pic], если [pic] График функции [pic] Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом: [pic], если [pic] [pic], если [pic] 5. Аналогично установим, что при [pic]имеем: [pic], если же [pic], то [pic] Таким образом: [pic] [pic], если [pic] (5) [pic], если [pic] 6. Выражение арктангенса через арккосинус. Из соотношения [pic] при [pic]имеем: [pic] Если же х<0, то [pic] Итак, [pic] [pic], если [pic] (6) [pic], если [pic] 7. Выражение арккосинуса через арктангенс. Если [pic], то [pic] При [pic] имеем: [pic] Итак, [pic] [pic], если [pic] (7) [pic], если [pic] 8. Выражение арктангенса через арккотангенс. [pic] [pic], если х>0 (8) [pic],если x<0 При x>0 равенство (8) легко установить; если же x<0, то [pic]. 9. Выражение арксинуса через арккотангенс. [pic] [pic], если [pic] (9) [pic], если [pic] 10. Выражение арккотангенса через арксинус. [pic] [pic], если 0<0 11. Выражение арккотангенса через арктангенс. [pic] [pic], если x>0 (11) [pic], если x<0 Примеры: Пример №1. Исследовать функцию [pic] Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим: y= 0 , если x>0 -? , если x<0 На чертеже изображен график данной функции Пример №2. Исследовать функцию [pic] Решение: Первое слагаемое определено для значений [pic], второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4). Т.к. [pic], то получаем [pic], откуда: [pic] на сегменте [0;1] Пример №3. Исследовать функцию [pic] Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4). [pic] Приняв во внимание равенство [pic] [pic], если [pic] [pic], если [pic] получим: y = 0 , если [pic] [pic] , если [pic] Выполнение обратных тригонометрических операций над тригонометрическими функциями. При преобразовании выражений вида [pic] следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений: [pic] Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x; [pic] и [pic] Областью определения функции [pic] служит интервал [pic], так как при всех действительных значениях х значение промежуточного аргумента [pic]содержится на сегменте [pic]. При произвольном действительном х значение y (в общем случае) отлично от значения х. Так, например, при х=?/6 имеем: [pic] но при х=5?/6 [pic] В силу периодичности синуса функция arcsin x также является периодической с периодом 2?, поэтому достаточно исследовать ее на сегменте [-?/2; 3?/2] величиной 2?. Если значение х принадлежит сегменту [-?/2; ?/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла. Если значение х принадлежит сегменту [?/2; 3?/2], то в этом случае дуга ?-х принадлежит сегменту [-?/2; ?/2]; и, так как [pic], то имеем y=?-х; в этом промежутке график функции совпадает с прямой линией y=?-х. Если значение х принадлежит сегменту [3?/2; 5?/2], то, пользуясь периодичностью или путем непосредственной проверки, получим: y=х-2? Если значение х принадлежит сегменту [-3?/2; -?/2], то y=-?-х Если значение х принадлежит сегменту [-5?/2; -3?/2], то y=х+2? Вообще, если [pic], то y=х-2?k и если [pic], то y=(?-х)+2?k График функции [pic]представлен на рисунке. Это лома

12
скачать работу


 Другие рефераты
Интернеттің іздеу технологиялары
Общение как феномен культуры
Семья как малая социальная группа
Топ психологиясын зерттеудің методологиялық және әдістемелік мәселелері


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ