Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Билеты по аналитической геометрии



 Другие рефераты
Аркфункции Адаптивная система компенсации неизвестного запаздывания Билеты по геометрии для 9 класса Билеты по математике для устного экзамена и задачи по теме

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.
Пусть задана система векторов а1, а2, а3,…,ал (1) одной размерности.
Определение: система векторов (1) называется линейно-независимой, если
равенство (1а1+(2а2+…+(лал=0 (2) выполняется лишь в том случае, когда все
числа (1, (2,…, (л=0 и (R
Определение: система векторов (1) называется линейно-зависимой, если
равенство (2) выполнимо хотя бы при одном (i(0 (i=1,…,k)
Свойства
1. Если система векторов содержит нулевой вектор, то она линейно зависима
2. Если система векторов содержит линейно-зависимую подсистему векторов, то
   она будет линейно-зависимой.
3. Если система векторов линейно-независима, то и любая ее подсистема будет
   линейно независимой.
4. Если система векторов содержит хотя бы один вектор, являющийся линейной
   комбинацией других векторов, то эта система векторов будет линейно
   зависимой.
Определение: два вектора называются коллинеарными, если они лежат на
параллельных прямых.
Определение: три вектора называются компланарными, если они лежат в
параллельных плоскостях.
Теорема: Если заданы два вектора a и b, причем а(0 и эти векторы
коллинеарны, то найдется такое действительное число (, что b=(a.
Теорема: Для того что бы два вектора были линейно-зависимы необходимо и
достаточно, что бы они были коллениарны.
Доказательство: достаточность. Т.к. векторы коллинеарны, то b=(a. Будем
считать, что а,b(0 (если нет, то система линейно-зависима по 1 свойству).
1b-(a=0. Т.к. коэфф. При b(0, то система линейно зависима по определению.
Необходимость. Пусть а и b линейно-зависимы. (а+(b=0, ((0. а= -b/(*b. а и b
коллинеарны по определению умножения вектора на число.
Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и
достаточно, чтобы они были компланарны. Необходимость.
Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны.
Доказательство: т.к. векторы линейно-зависимы, то (а+(b+(c=0, ((0. с= -
(/(*а - (/(*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной
плоскости.

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.
1. Определение: пусть задана некоторая система векторов. Базисом этой
системы называется мах. совокупность линейно-независимых векторов системы.
В множестве векторов на прямой  базис состоит из одного ненулевого вектора.
В качестве базиса множества векторов на плоскости можно взять произвольную
пару.
В множестве векторов в трехмерном пространстве базис состоит из трех
некомпланарных векторов.
2. Прямоугольная (декартова) система координат на плоскости определяется
заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой
масштабной ед. на осях.
Прямоугольная (декартова) система координат в пространстве определяется
заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и
одинаковой масштабной ед. на осях.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: скалярным произведением двух векторов называется произведение
длин двух векторов на косинус угла между ними.
(а,b)=|a| |b| cos u,  u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц.
Свойства:
1. (а,b)= (b,а)
2. ((а,b)= ( (а,b)
3. (а+b,с)= (а,с)+ (b,с)
4. (а,а)=|a|2 – скал.квадрат.
Определение: два вектора называются ортоганальными, когда скалярное пр-е
равно 0.
Определение: вектор называется нормированным, если его скал.кв.равен 1.
Определение: базис множества векторов называется ортонормированным, если
все векторы базиса взаимно-ортагональны и каждый вектор нормирован.
Теорема: Если векторы а и b заданы координатами в ортонормированном базисе,
то их скалярное произведение равно сумме произведений соответствующих
координат.
Найдем формулу угла между векторами по определению скалярного произведения.
cos u=a,b/|a||b|=x1x2+y1y2+z1z2/sqrt(x12+y12+z12)*sqrt(x22+y22+z22)

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: векторным произведением двух векторов a и b обозначаемым [a,b]
называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u.
2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку.
Свойства:
1. [a,b]= - [b,a]
2. [(а,b]= ( [а,b]
3. [a+b,c]=[a,c]+[b,c]
4. [a,a]=0
Теорема: Длина векторного произведения векторов равна площади
параллелограмма построенного на этих векторах.
Доказательство: справедливость теоремы вытекает из первого требования
определения векторного произведения.
Теорема: Пусть векторы а и b заданы координатами в ортонормированном
базисе, тогда векторное произведение равно определителю третьего порядка в
первой строке которого наход-ся базисны векторы, во второй – координаты
первого вектора, в третьей – координаты второго.
Определение: ортой  вектора а называется вектор ед. длины имеющий
одинаковое направление с вектором а. ea=a/|a|

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.
1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е
пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой.
Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол
между пр.
1. Ах+By+C=0 (1), где A, B одновр.не равны нулю.
Теорема: n(A,B) ортоганален прямой заданной ур-ем (1).
Доказательство: подставим коорд. т.М0 в ур-е (1) и получим Ах0+By0+C=0
(1’). Вычтем (1)-(1’) получим А(х-х0)+B(y-y0)=0, n(A,B), М0М(х-х0, y-y0).
Слева в полученном равенстве записано скалярное произведение векторов, оно
равно 0, значит n и M0M ортоганальны. Т.о. n ортоганлен прямой. Вектор
n(A,B) называется нормальным вектором прямой.
Замечание: пусть ур-я А1х+B1y+C1=0 и А2х+B2y+C2=0 определяют одну и ту же
прямую, тогда найдется такое действительное число t, что А1=t*А2 и т.д.
Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е
называется неполным.
1. С=0,          Ах+By=0 – проходит ч/з (0,0)
2. С=0, А=0,     By=0, значит у=0
3. С=0, B=0,     Ах=0, значит х=0
4. А=0,     By+C=0, паралл. ОХ
5. B=0,          Ах+C=0, паралл. OY
2. x/a+y/b=1.
Геом.смысл: прямая отсекает на осях координат отрезки а и b
3. x-x1/e=y-y1/m
Пусть на прямой задана точка и напр. вектор прямой  (паралл.пр.). Возьмем
на прямой произв. точки. q и M1М(х-х1; y-y1)
4. x-x1/x2-x1=y-y1/y2-y1
Пусть на прямой даны две точки М1(x1;y1) и М2(x2;y2). Т.к. на прямой заданы
две точки, то задан направляющий вектор q(x2-x1; y2-y1)
5. y=kb+b.
u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом
прямой k=tg u
Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой
tg u = m/e. Тогда видим x-x1/e/e=y-y1/m/e. y-y1=k(x-x1) при y1-kx1=b,
y=kx+b
6. xcos(+ysin(-P=0
( - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и (
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos(, sin().
Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем
двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2.
ОМ*n=cos(x+sin(y. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.
Ах+By+C=0
xcos(+ysin(-P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos2(=(A*t)2
Sin2(=(B*t)2
-p=C*t
cos2(+sin2(=t2(A2+B2), t2=1/A2+B2,      t=(sqrt(1/ A2+B2). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.

7. Система: x=et+x1 и y=mt+y1

НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.
1. xcos(+ysin(-P=0
( - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и (
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos(, sin().
Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем
двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2.
ОМ*n=cos(x+sin(y. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.
Ах+By+C=0
xcos(+ysin(-P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos2(=(A*t)2
Sin2(=(B*t)2
-p=C*t
cos2(+sin2(=t2(A2+B2), t2=1/A2+B2,      t=(sqrt(1/ A2+B2). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.
2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки
от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если
нач.коорд. и точка по одну сторону.
Теорема: Пусть задано нормальное уравнение прямой xcos(+ysin(-P=0 и
М1(x1;y1), тогда отклонение точки М1 = x1cos(+y1sin(-P=0
Задача: найти расстояние от точки М0(x0;y0) до прямой Ах+By+C=0. Т.к.
d=|б|, то формула расстояний принимает вид d=| x0cos(+y0sin(-P|.
d=|Ах0+By0+C|/sqrt(A2+B2)

ГИПЕРБОЛА.
Определение: ГМТ на плоскости модуль разности расстояний от которых до двух
фиксированных точек, называемых фокусами, есть величина постоянная
Каноническое уравнение:
Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом
расстоянии от начала координат. |F1F2|=2c, М – произвольная точка
гиперболы. r1, r2 – расстояния от М до фокусов;

|r2-r1|=2a; a<1 (т.к. а>c)
е гиперболы >1 (т.к. с>a)
Определение: окружность – эллипс у которого а=b, с=0, е=0.
Выразим эксцентриситеты через а и b:
[pic]
[pic]
е эллипса является мерой его «вытянутости»
е гиперболы характеризует угол раствора между асимптотами
2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется
прямая расположенная в полуплоскости ( перпендикулярно большой оси эллипса
и отстоящий от его центра на расстоянии а/е>a (а/е0
r1=xe+a

d1 – расстояние от М(x,y) до прямой D1
xcos180+ysin180-p=0
x=-p
x=-a/e
бм=-x-a/e
d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.)
[pic]

Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к
расстоянию до соответствующей директрисы есть величина постоянная и
представляет собой эллипс, если <1, 
12
скачать работу


 Другие рефераты
Методы и принципы сегментного анализа маркетинга, сегментация рынка
Жамбыл Жабаев (1846-1945)
Загрязнение водоемов в Сахалинской области
Жизнь и творчество Николая Константиновича Рериха


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ