Этилен и его производные в промышленном органическом синтезе
Другие рефераты
МИНИСТЕРСТВО ОБЩЕГО
И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СамГТУ
Кафедра органической химии
КУРСОВАЯ РАБОТА
ЭТИЛЕН И ЕГО ПРОИЗВОДНЫЕ В ПРОМЫШЛЕННОМ ОРГАНИЧЕСКОМ СИНТЕЗЕ
Выполнил
Асафьев В.Н.
студент II-ХТ-4
Принял
Климочкин Ю.Н.
доктор химических наук
Самара
1999
Содержание
Стр.
Получение и применение
этилена……………………………………………………………….. 3
Галогенирование этилена……………………………………………
Гидратация этилена………………………………………………….
Окись этилена и синтезы на её основе…………………………………………………………………
Синтезы на основе гомологов этилена………………………………………………………………..
Полимеризация олефинов……………………………………………
Список используемой литературы…………..……………………………………………….
Получение и применение этилена.
Этилен впервые был получен немецким химиком Иоганном Бехером в 1680
году при действии купоросного масла на винный спирт. Вначале его
отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году
этилен подобным же образом получили голландские химики Дейман, Потс-ван-
Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа",
так как обнаружили способность этилена присоединять хлор с образованием
маслянистой жидкости - хлористого этилена ("масло голландских химиков").
Изучение свойств этилена, его производных и гомологов началось с
середины ХIХ века. Начало практическому использованию этих соединений
положили классические исследования А.М. Бутлерова и его учеников в области
непредельных соединений и особенно созданная Бутлеровым теория химического
строения. В 1860 году он получил этилен действием меди на йодистый метилен,
установив структурную формулу этилена.
Этилен представляет собой бесцветный газ, обладающий слабым, едва
ощутимым запахом. Он плохо растворим в воде (при 0(С в 100 г воды
растворяется 25,6 мл этилена), горит светящимся пламенем, образует с
воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при
температурах выше 350(С этилен частично разлагается на метан и ацетилен:
3С2Н4 2СН4 + 2С2Н2
При температуре около 1200(С диссоциирует главным образом на ацетилен и
водород:
С2Н4 С2Н2 + Н2
В природных газах (за исключением вулканических) этилен не
встречается. Он образуется при пирогенетическом разложении многих природных
соединений, содержащих органические вещества.
Процесс пиролиза для получения этилена осуществляется в печах
различного устройства пропусканием газообразных углеводородов или их паров
в присутствии катализаторов при температуре 760-780(С. Обычно используются
печи трубчатого типа. Этилен можно также получить дегидрированием этана:
2СН4 t( С2Н4 + 2Н2
и осторожным гидрированием ацетилена:
С2Н2 + Н2 кат
С2Н4
Для получения этилена и его гомологов методом пиролиза в качестве
сырья используют этан, пропан, бутан, содержащиеся в попутных газах
нефтедобычи, газах термического и каталитического крекингов, а также жидкие
углеводороды: газовый бензин и низкоактановые бензино-легроиновые фракции
прямой гонки нефти.
Производительность существующих печей для пиролиза углеводородов
составляет 3,5-4 т перерабатываемого сырья в час. Печи новой конструкции
рассчитаны на переработку 7-10т сырья в час.
При определённых условиях пиролиза бензина при получении 1т этилена
может быть одновременно выделено: пропилена - 0,65т; изобутилена - 0,11т; н-
бутиленов - 0,11т, дивинила - 0,12т; бензола - 0,165т и толуола - 0,08т,
использование которых позволит значительно улучшить технико-экономические
показатели нефтехимических производств. Из этилена получают более 200
ценных соединений, важнейшими из которых являются хлористый этил,
дихлорэтан-1,2, этиленхлоргидрин, окись этилена, диоксан, этиленгликоль,
этиловый эфир этиленгликоля, уксусногликолевый эфир, диэтиленгликоль,
этиламин, этаноламин, диэтаноламин, триэтаноламин.
Галогенирование этилена.
Обычной реакцией между галогенами и непредельными углеводородами
является присоединение атомов галогена по месту двойной связи с
образованием галогенопроизводных с чётным числом атомов галогена. Однако у
олефинов с разветвлёнными цепями, а при высокой температуре и у олефинов
нормального строения галогенирование протекает сложнее, с образованием
полихлоридов и непредельных моногалогенопроизводных.
Активность галогенов в реакциях присоединения понижается с
увеличением их молекулярного веса. Фтор реагирует весьма энергично, реакция
присоединения хлора протекает несравненно медленнее.
При хлорировании этилена сначала получается дихлорэтан:
С2Н4 + Сl2 С2Н4Сl2 + 201
кДж
Но хлорирование этилена может идти и дальше, в результате чего образуется
трихлорэтан и тетрахлорэтан. Выход этих продуктов растёт с повышением
температуры реакции. Для торможения цепной реакции замещения при
хлорировании этилена и получения более чистого дихлорэтана процесс ведут
при низких температурах и в присутствии небольших количеств хлорного
железа и О2.
Следует отметить, что Е.В. Алексеевский в 1928 году установил, что
при пропускании смеси этилена и хлора над углём при 120(С получается чистый
дихлорэтан с выходом в 80% от теоретического.
Процесс получения дихлорэтана хлорированием этилена в промышленности
осуществляется в реакторе с мешалкой или башне барботажного типа. Заранее
тщательно высушенные, во избежании коррозии аппаратуры, хлор и этилен с
небольшим избытком последнего (5-10%) поступают раздельно в нижнюю часть
реактора1 и барботируют через слой дихлорэтана.
Рисунок 1
Избыточный дихлорэтан стекает в сборник 2. Газы, содержащие пары
дихлорэтана, хлористый водород, не прореагировавший этилен, поступают в
вымораживатель для извлечения дихлорэтана, а оставшиеся газы промываются
водой для удаления хлороводорода, после чего выводятся из системы. Из
сборника 2 дихлорэтан-сырец насосом 3 направляется в смеситель 4, где
растворённый хлористый водород нейтрализуется 5-10%-ным раствором едкого
натра. Затем азеотропная смесь дихлорэтан-вода отгоняется при температуре
72(С в колонне азеотропной сушки, не показанной на схеме, и для
освобождения от трихлорэтана и других примесей поступает в ректификационную
колонну 10.
Процесс осуществляется в среде жидкого дихлорэтана, который
растворяет хлор и этилен и обеспечивает необходимый отвод тепла из зоны
реакции. Циркуляция дихлорэтана через выносной теплообменник позволяет
вести реакцию с хорошим выходом при температуре 30-40(С.
Дихлорэтан получил широкое практическое применение как неогнеопасный
растворитель при извлечении жиров, а также для синтеза таких ценных
химических продуктов, как этиленгликоль и его эфиры, этилендиамин,
дибензил, хлористый винил, полисульфидный синтетический каучук (тиокол) и
др. Дихлорэтан используется для борьбы с вредителями с/х (окуривание или
фумигация).
Дихлорэтан легко отщепляет хлористый водород, превращаясь в хлористый
винил:
активир. уголь
СН2Сl(СН2Сl 480-520(С СН2 = СНСl + НСl
Производство этого важного для промышленности мономера
осуществляется и другими методами. При хлорировании этилена при температуре
430(С образуется хлористый винил:
СН2 = СН2 + Сl2 СН2 = СНСl + НСl
Хороший выход наблюдается и при дегидрохлорировании дихлорэтана
спиртовым раствором щёлочи:
СН2Сl(СН2Сl + NaOH 75(С, 2,5 атм СН2 = СНСl + NaСl + Н2О
Для получения этиленгликоля дихлорэтан нагревают в автоклавах с
известью или раствором щелочи. При взаимодействии с известью достаточно 15-
20 минутного нагревания при 190(С и 100 атм давления, чтобы получить с
выходом 80-85( (А.Л. Клебанский и И.М. Долгопольский, 1933г.).
Хорошие результаты получают при омылении в автоклаве формиатом натрия
в присутствии метанола:
СН2Сl(СН2Сl +2НСООNa + 2СН3ОН
СН2ОН(СН2ОН +2NaCl +2НСООСН3
Образующийся муравьино-метиловый эфир действием щелочи переводится в
формиат натрия и метиловый спирт, которые снова реагируют с дихлорэтаном.
Процесс проводится непрерывно.
| | скачать работу |
Другие рефераты
|