Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Этилен и его производные в промышленном органическом синтезе



 Другие рефераты
Институт монархии Этанол Институт президентства ФРГ стекло

МИНИСТЕРСТВО ОБЩЕГО


                       И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ


                            РОССИЙСКОЙ ФЕДЕРАЦИИ


                                   СамГТУ



                         Кафедра органической химии



                               КУРСОВАЯ РАБОТА

        ЭТИЛЕН И ЕГО ПРОИЗВОДНЫЕ В ПРОМЫШЛЕННОМ ОРГАНИЧЕСКОМ СИНТЕЗЕ



Выполнил
       Асафьев В.Н.
студент  II-ХТ-4

Принял
  Климочкин Ю.Н.
доктор химических наук



                                   Самара
                                    1999



                                 Содержание



                                                                        Стр.
Получение и применение

этилена……………………………………………………………….. 3

Галогенирование этилена……………………………………………

Гидратация этилена………………………………………………….

Окись этилена и синтезы на её основе…………………………………………………………………

Синтезы на основе гомологов этилена………………………………………………………………..

Полимеризация олефинов……………………………………………

Список используемой литературы…………..……………………………………………….



                       Получение и применение этилена.


       Этилен впервые был получен немецким химиком Иоганном Бехером  в 1680
году при действии купоросного масла на винный спирт. Вначале его
отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году
этилен подобным же образом получили голландские химики Дейман, Потс-ван-
Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа",
так как обнаружили способность этилена присоединять хлор с образованием
маслянистой жидкости - хлористого этилена ("масло голландских химиков").
       Изучение свойств этилена, его производных и гомологов началось с
середины ХIХ века. Начало практическому использованию этих соединений
положили классические исследования А.М. Бутлерова и его учеников в области
непредельных соединений и особенно созданная Бутлеровым теория химического
строения. В 1860 году он получил этилен действием меди на йодистый метилен,
установив структурную формулу этилена.
       Этилен представляет собой бесцветный газ, обладающий слабым, едва
ощутимым запахом. Он плохо растворим в воде (при 0(С в 100 г воды
растворяется 25,6 мл этилена), горит светящимся пламенем, образует с
воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при
температурах выше 350(С этилен частично разлагается на метан и ацетилен:

                                3С2Н4                    2СН4     +    2С2Н2


При температуре около 1200(С диссоциирует главным образом на ацетилен и
водород:

                               С2Н4                     С2Н2  + Н2

       В природных газах (за исключением вулканических) этилен не
встречается. Он образуется при пирогенетическом разложении многих природных
соединений, содержащих органические вещества.
       Процесс пиролиза для получения этилена осуществляется в печах
различного устройства пропусканием газообразных углеводородов или их паров
в присутствии катализаторов при температуре 760-780(С.  Обычно используются
печи трубчатого типа. Этилен можно также получить дегидрированием этана:

                                2СН4         t(              С2Н4  + 2Н2

и осторожным гидрированием ацетилена:

                                          С2Н2      +     Н2             кат
С2Н4

       Для получения этилена и его гомологов методом пиролиза в качестве
сырья используют этан, пропан, бутан, содержащиеся в попутных газах
нефтедобычи, газах термического и каталитического крекингов, а также жидкие
углеводороды: газовый бензин и низкоактановые бензино-легроиновые фракции
прямой гонки нефти.
       Производительность существующих печей для пиролиза углеводородов
составляет 3,5-4 т перерабатываемого сырья в час. Печи новой конструкции
рассчитаны на переработку 7-10т сырья в час.
       При определённых условиях пиролиза бензина при получении 1т этилена
может быть одновременно выделено: пропилена - 0,65т; изобутилена - 0,11т; н-
бутиленов - 0,11т, дивинила - 0,12т; бензола - 0,165т и толуола - 0,08т,
использование которых позволит значительно улучшить технико-экономические
показатели нефтехимических производств. Из этилена получают более 200
ценных соединений, важнейшими из которых являются хлористый этил,
дихлорэтан-1,2, этиленхлоргидрин, окись этилена, диоксан, этиленгликоль,
этиловый эфир этиленгликоля, уксусногликолевый эфир, диэтиленгликоль,
этиламин, этаноламин, диэтаноламин, триэтаноламин.


                          Галогенирование этилена.


       Обычной реакцией между галогенами и непредельными углеводородами
является присоединение атомов галогена по месту двойной связи с
образованием галогенопроизводных с чётным числом атомов галогена. Однако у
олефинов с разветвлёнными цепями, а при высокой температуре и у олефинов
нормального строения галогенирование протекает сложнее, с образованием
полихлоридов и непредельных моногалогенопроизводных.
       Активность галогенов в реакциях присоединения понижается с
увеличением их молекулярного веса. Фтор реагирует весьма энергично, реакция
присоединения хлора протекает несравненно медленнее.
       При хлорировании этилена сначала получается дихлорэтан:
                          С2Н4  +  Сl2                       С2Н4Сl2  +  201
кДж

Но хлорирование этилена может идти и дальше, в результате чего образуется
трихлорэтан и тетрахлорэтан. Выход этих продуктов растёт с повышением
температуры реакции. Для торможения цепной реакции замещения при
хлорировании этилена и получения более чистого дихлорэтана процесс ведут
при низких температурах  и в присутствии небольших количеств хлорного
железа и О2.
       Следует отметить, что Е.В. Алексеевский в 1928 году установил, что
при пропускании смеси этилена и хлора над углём при 120(С получается чистый
дихлорэтан с выходом в 80% от теоретического.
       Процесс получения дихлорэтана хлорированием этилена в промышленности
осуществляется в реакторе с мешалкой или башне барботажного типа. Заранее
тщательно высушенные, во избежании коррозии аппаратуры, хлор и этилен с
небольшим избытком последнего (5-10%) поступают раздельно в нижнюю часть
реактора1 и барботируют через слой дихлорэтана.

                                  Рисунок 1

        Избыточный дихлорэтан стекает в сборник 2. Газы, содержащие пары
дихлорэтана, хлористый водород, не прореагировавший этилен, поступают в
вымораживатель для извлечения дихлорэтана, а оставшиеся газы промываются
водой для удаления хлороводорода, после чего выводятся из системы. Из
сборника 2 дихлорэтан-сырец насосом 3 направляется в смеситель 4, где
растворённый хлористый водород нейтрализуется 5-10%-ным раствором едкого
натра. Затем азеотропная смесь дихлорэтан-вода отгоняется при температуре
72(С в колонне азеотропной сушки, не показанной на схеме, и для
освобождения от трихлорэтана и других примесей поступает в ректификационную
колонну 10.
       Процесс осуществляется в среде жидкого дихлорэтана, который
растворяет хлор и этилен и обеспечивает необходимый отвод тепла из зоны
реакции. Циркуляция дихлорэтана через выносной теплообменник позволяет
вести реакцию с хорошим выходом при температуре 30-40(С.
       Дихлорэтан получил широкое практическое применение как неогнеопасный
растворитель при извлечении жиров, а также для синтеза таких ценных
химических продуктов, как этиленгликоль и его эфиры, этилендиамин,
дибензил, хлористый винил, полисульфидный синтетический каучук (тиокол) и
др. Дихлорэтан используется для борьбы с вредителями с/х (окуривание или
фумигация).
       Дихлорэтан легко отщепляет хлористый водород, превращаясь в хлористый
винил:
                                       активир. уголь
       СН2Сl(СН2Сl         480-520(С         СН2 = СНСl  +  НСl

       Производство этого важного для промышленности мономера
осуществляется и другими методами. При хлорировании этилена при температуре
430(С образуется хлористый винил:

                СН2 = СН2  +  Сl2                       СН2 = СНСl  +  НСl

       Хороший выход наблюдается и при дегидрохлорировании дихлорэтана
спиртовым раствором щёлочи:

   СН2Сl(СН2Сl + NaOH    75(С, 2,5 атм     СН2 = СНСl + NaСl + Н2О

       Для получения этиленгликоля дихлорэтан нагревают в автоклавах с
известью или раствором щелочи. При взаимодействии с известью достаточно 15-
20 минутного нагревания при 190(С и 100 атм давления, чтобы получить с
выходом 80-85( (А.Л. Клебанский и И.М. Долгопольский, 1933г.).
       Хорошие результаты получают при омылении в автоклаве формиатом натрия
в присутствии метанола:

       СН2Сl(СН2Сl +2НСООNa + 2СН3ОН

                           СН2ОН(СН2ОН +2NaCl +2НСООСН3

       Образующийся муравьино-метиловый эфир действием щелочи переводится в
формиат натрия и метиловый спирт, которые снова реагируют с дихлорэтаном.
Процесс проводится непрерывно.
   
1234
скачать работу


 Другие рефераты
Битва под Курском
Особенности религиозного сознания
Кредитная политика банка
Методика использования электронного учебника на уроках физики


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ