Главная    Почта    Новости    Каталог    Одноклассники    Погода    Работа    Игры     Рефераты     Карты
  
по Казнету new!
по каталогу
в рефератах

Титан



 Другие рефераты
Технеций Технология неконцентрированной азотной кислоты Основные типы научных и богословских теорий происхождения религий Основы формирования личности христианина

ПОДГРУППА ТИТАНА.

  На долю титана приходится около 0,2% от общего числа атомов земной  коры,
т.е. он является одним из весьма распростанённых в природе  элементов.  Доля
циркония составляет 3(10-3 и гафния — 5(10-5%.
  Хотя содержание в земной коре даже гафния больше, чем, например, иода или
ртути,  однако  и  титан  и  его  аналоги  ещё  сравнительно  плохо  освоены
практикой и иногда трактуются как  “редкие”  элементы.  Обусловлено  это  их
распылённостью,  вследствие  чего  пригодные  для  промышленной   разработки
месторождения встречаются  лишь  в  немногих  местах  земного  шара.  Другой
важной причиной является трудность выделения  рассматриваемых  элементов  из
их природных соединений.
  Цирконий открыт в 1789 г., титан — в 1791 г. Открытие гафния  последовало
лишь в 1923 г. Элемент № 104  был  впервые  (1964  г.)  синтезирован  Г.  Н.
Флёровым  с  сотрудниками.  В  СССР  для  него  было   предложено   название
курчатовий (Ku), в США  —  резерфордий  (Rf).  Известно  несколько  изотопов
этого элемента,  из  которых  наибольшей  средней  продолжительностью  жизни
атома (около 2 мин.) обладает 261Ku. На немногих атомах было  показано,  что
с химической точки зрения курчатовий подобен гафнию.
  Природный титан слагается из изотопов 46 (8,0), 47 (7,3), 48  (73,9),  49
(5,5), 50 (5,3%); цирконий — 90 (51,5%), 91 (11,2), 92  (17,1),  94  (17,4),
96 (2,8%); гафний — 174 (0,2),  176  (5,2),  177  (18,6),  178  (27,1),  179
(13,7), 180 (35,2%).
  В основном состоянии атомы имеют строение  внешних  электронных  оболочек
3d24s2  (Ti),  4d25s2  (Zr),  5d26s2  (Hf)   и   двухвалентны.   Возбуждение
четырёхвалентных состояний Тi (3d33s1), Zr  (4d35s1),  Hf  (5d36s1)  требует
затраты соответственно 80, 59 и 167 кДж/моль,  т.е.  осуществляется  гораздо
легче, чем у элементов подгруппы германия.
  Титан  встречается  в  минералах  ильменит  (FeTiO3)  и   рутил   (TiO2).
Значительные количества титана содержат также  некоторые  железные  руды,  в
частности уральские титаномагнетиты. Цирконий встречается главным образом  в
виде минералов цирконила (ZrSiO4) и бадделеита (ZrO2). Для гафния  отдельные
минералы пока не найдены. В виде примеси (порядка  1  атомн.  %)  он  всегда
содержится в рудах Zr.
  Ничтожные количества титана постоянно содержатся в организмах растений  и
животных, но его  биологическая  роль  не  ясна.  Титан  и  его  аналоги  не
токсичны.
  В свободном состоянии элементы подгруппы  титана  обычно  получают  путём
восстановления их хлоридов магнием по схеме:
                         ЭCl4 + 2 Mg = 2 MgCl2 + Э.
 Реакция проводится при нагревании исходных веществ до 900  (С  в  атмосфере
аргона (под давлением).
  Восстановление хлоридов титана  и  его  аналогов  магнием  сопровождается
значительным выделением тепла: 531 (Тi)  и  322  (Zr)  кДж/моль.  Другим  их
восстановителем является металлический натрий, реакции с которым  ещё  более
экзотермичны (приблизительно на 355 кДж/моль). Наиболее чистые  образцы  Ti,
Zr  и  Hf  были  получены  путём  термического  разложения  на   раскалённой
вольфрамовой проволоке паров тетраиодидов под уменьшенным давлением.
  По физическим свойствам  элементы  подгруппы  титана  являются  типичными
металлами, имеющими вид стали. Чистые металлы хорошо поддаются  механической
обработке. Но даже незначительные примеси некоторых элементов (Н, О, N, C  и
др.) сообщают им хрупкость.  Их характерные константы:

|                          |Ti           |Zr           |Hf           |
|Плотность, г/см3          |4,5          |6,5          |13,3         |
|Температура плавления, (С |1670         |1855         |2220         |
|Температура кипения, (С   |3170         |4330         |5690         |
|Электропроводность (Нg =  |2            |2            |3            |
|1)                        |             |             |             |

  В виде чистых компактных  металлов  все  три  элемента  обладают  высокой
стойкостью  по  отношению  к  различным   химическим   воздействиям.   Более
реакционноспособны  они  в   мелкораздробленном   состоянии,   при   обычных
температурах  из  всех  кислот  легко  взаимодействуют  лишь  с  HF.  Лучшим
растворителем  для  них  является  смесь  плавиковой   и   азотной   кислот,
реагирующая по схеме:
              3 Э + 18 НF + 4 HNO3 = 3 H2[ЭF6] + 4 NO + 8 H2O.
  При  высоких  температурах  Ti,  Zr  и  Hf  становятся  химически   очень
активными.  В  этих  условиях  они  энергично  соединяются   не   только   с
галогенами, кислородом и серой, но также с углеродом и  азотом.  Порошки  их
способны поглощать большие количества водорода.
  При общей высокой устойчивости чистых  компактных  металлов  к  различным
химическим воздействиям элементы  подгруппы  титана  проявляют  и  некоторые
индивидуальные особенности. Так, по отношению к соляной или  серной  кислоте
цирконий значительно устойчивее титана, а по отношению к влажному хлору  или
царской водке — наоборот. Под действием НF титан переходит  в  трёхвалентное
состояние, а цирконий и гафний — в четырёхвалентное. При  наличии  ионов  F(
все  три  металла  постепенно   реагируют   даже   со   слабыми   кислотами.
Концентрированной азотной  кислотой  титан  (подобно  олову)  окисляется  до
нерастворимой  титановой  кислоты.  В  крепких  растворах  сильных   щелочей
порошок  его  растворяется  с  выделением  водорода  и  образованием   солей
титановой  кислоты.  Цирконий  и  гафний  по  отношению  к   щелочам   очень
устойчивы.
  Взаимодействие титана со фтором наступает уже около  150  (С,  с  другими
газами — при 300(400 (С. В кислороде порошок титана загорается выше 500  (С,
в азоте — выше 800 (С. Порошок циркония воспламеняется на воздухе уже  около
250 (С. Сжиганием его в кислороде может быть получена  температура  до  4650
(С.
  Обычно поверхность металлического циркония и титана покрыта очень тонкой,
но  плотной  плёнкой  оксида,  полностью  изолирующей  металл   от   внешних
воздействий. При некоторых условиях  (например,  при  контакте  Zr  c  очень
влажным воздухом) плёнка может стать толстой, рыхлой и легко отделяющейся  в
результате того или иного  случайного  воздействия  (например,  сотрясения).
Внезапно освобождённая от неё металлическая поверхность  начинает  энергично
реагировать  с  кислородом  и   влагой   воздуха,   что   иногда   ведёт   к
самовозгоранию металла. Следует отметить, что горящий  на  воздухе  цирконий
потушить практически невозможно.
  Каждый моль Ti, Zr или Hf способен сорбировать до  1  моля  водорода,  но
быстро  эта   сорбция   осуществляется   лишь   при   высоких   температурах
(приблизительно с 400  для  Тi  и  с  700  (С  для  Zr).  Значительно  легче
устанавливается  равновесие,  если  металл  был  предварительно  прокалён  в
атмосфере Н2. Простейшим методом синтеза этих гидридов является  достаточное
нагревание и затем медленное охлаждение металла  в  атмосфере  водорода  под
тем или иным его давлением. При  малом  содержании  сорбированного  водорода
внешний  вид  металла  существенно  не  изменяется,  но   при   большем   он
превращается в серый или чёрный порошок (с плотностью 3,8  для  ТiH2  и  5,5
г/см3 для ZrH2). Образование гидридов  ЭН2  из  элементов  идёт  с  довольно
значительным выделением тепла: около 125  (Тi)  или  167  кДж/моль  (Zr).  В
обычных условиях  эти  гидриды  устойчивы  на  воздухе  (но  при  поджигании
загораются). Они довольно инертны также по отношению к большинству  веществ,
не являющихся сильными  окислителями.  Всё  это  указывает,  как  будто,  на
образование при сорбции водорода определённых химических соединений.  Однако
подобные  соединения  должны   быть   чрезвычайно   неустойчивы,   так   как
поглощённое металлом количество  водорода  меняется  в  зависимости  от  его
давления  и  последовательно  уменьшается  при  нагревании.  Интересно,  что
образование гидрида титана наблюдалось  также  при  длительном  действии  на
металл крепкой соляной кислоты; основная реакция идёт по уравнению:
                    4 Тi + 6 HCl = 2 TiCl3 + 2 TiH2 + H2.
  Гидрид  титана   является   хорошим   катализатором   некоторых   реакций
гидрирования органических  соединений.  Он  находит  использование  также  в
порошковой металлургии  (как  раскислитель).  Гидрид  циркония  представляет
интерес для ядерной  энергетики  (как  замедлитесь  нейтронов).  Термическим
разложением   обоих   гидридов   могут   быть   получены    тонкие    плёнки
соответствующего  металла  на  различных  материалах,  что  важно  для  ряда
областей техники.
  При нагревании Тi и Zr способны сорбировать также кислород (до 30 ат. %),
причём поглощение сопровождается лишь  очень  небольшим  увеличением  объёма
металлов. В меньших количествах они сорбируют и другие газы (N2 и пр.).
  Практическое значение Ti и Zr особенно велико для металлургии специальных
сталей.   Оба   металла   используются   и   в   качестве    самостоятельных
конструктивных материалов. Их  соединения  находят  применение  в  различных
отраслях  промышленности.  Гафний   и   его   соединения   пока   почти   не
используются.
  В металлургии титаном и цирконием пользуются в виде сплавов с  железом  —
ферротитана и ферроциркония, содержащих 15(50% Тi  или  Zr.  Выработка  этих
сплавов производится обычно путём прокаливания природных  минералов  Ti  или
Zr с углём в присутствии железной руды.
  Добавка к стали уже 0,1% титана придаёт ей твёрдость и эластичность,  что
делает такую  сталь  очень  хорошим  материалом  для  изготовления  рельсов,
вагонных осей и колёс и т. д. Введением в сталь уже 0,1% Zr сильно  повышает
её твёрдость и вязкость, что особенно ценно для изготовления  броневых  плит
и щитов. Как Тi, так и Zr нередко вводят также в различные сплавы Сu и Al.
  Как конструкционный материал титан имеет  очень  благоприятное  отношение
прочности  к  массе  в  сочетании  с  высоко
1234
скачать работу


 Другие рефераты
Аудит конспект лекций
Раннее и первое детство
Экологическая ситуация в России
Политический портрет Н.С. Хрущева


 

Отправка СМС бесплатно

На правах рекламы


ZERO.kz
 
Модератор сайта RESURS.KZ