Пирамида и призма
Другие рефераты
Общий исторический обзор
Первые геометрические понятия возникли в доисторические времена.
Разные формы материальных тел наблюдал человек в природе: формы растений и
животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не
только пассивно наблюдал природу, но практически осваивал и использовал ее
богатства. В процессе практической деятельности он накапливал
геометрические сведения. Материальные потребности побуждали людей
изготовлять орудия труда, обтесывать камни и строить жилища, лепить
глиняную посуду и натягивать тетиву на лук. Конечно, десятки и сотни тысяч
раз натягивали люди свои луки изготовляли разные предметы с прямыми ребрами
и т. п., пока постепенно дошли до отвлеченного понятия прямой линии.
Примерно то же можно сказать о других основных геометрических понятиях.
Практическая деятельность человека служила основой длительного процесса
выработки отвлеченных понятий, открытия простейших геометрических
зависимостей и соотношений.
Начало геометрии было положено в древности при решении чисто
практических задач. Со временем, когда накопилось большое количество
геометрических фактов, у людей появилось потребность обобщения, уяснения
зависимости одних элементов от других, установления логических связей и
доказательств. Постепенно создавалась геометрическая наука. Примерно в VI -
V вв. до н. э. в Древней Греции в геометрии начался новый этап развития,
что объясняется высоким уровнем, которого достигла общественно-политическая
и культурная жизнь в греческих государствах. Произведения, содержащие
систематическое изложение геометрии, появились в Греции еще в V до н.э., но
они были вытеснены “Началами” Евклида.
Геометрические знания примерно в объеме современного курса средней
школы были изложены еще 2200 лет назад в “Началах” Евклида. Конечно,
изложенная в “Началах” наука геометрия не могла быть создана одним ученым.
Известно, что Евклид в своей работе опирался на труды десятков
предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ,
Архит, Теэтет, Евдокс и др. Ценой больших усилий, исходя из отдельных
геометрических сведений, накопленных тысячелетиями в практической
деятельности людей, эти великие ученые сумели на протяжении 3 - 4 столетий
привести геометрическую науку к высокой ступени совершенства. Историческая
заслуга Евклида состоит в том, что он, создавая свои “Начала”, объединил
результаты своих предшественников, упорядочил и привел в одну систему
основные геометрические знания того времени. На протяжении двух тысячелетий
геометрия изучалась в том объеме, порядке и стиле, как она была изложена в
“Началах” Евклида. Многие учебники элементарной геометрии во всем мире
представляли (а многие и поныне представляют) собой лишь переработку книги
Евклида. “Начала” на протяжении веков были настольной книгой величайших
ученых.
В XVII в. Декарт благодаря методу координат сделал возможным изучение
свойств геометрических фигур с помощью алгебры. С этого времени начала
развиваться аналитическая геометрия. В XVII - XVIII вв. зарождается и
разрабатывается дифференциальная геометрия, изучающая свойства фигур с
помощью методов математического анализа. В XVIII- XIX вв. развитие военного
дела и архитектуры привело к разработке методов точного изображения
пространственных фигур на плоском чертеже, в связи с чем появляются
начертательная геометрия, научные основы которой заложил французский
математик Г. Монж, и проективная геометрия, основы которой были созданы в
трудах французских математиков Д. Дезарга и Б. Паскаля (XVII в.). В ее
создании важнейшую роль сыграл другой французский математик - Ж. В. Понселе
(XIX в.).
Коренной перелом в геометрии впервые произвел в первой половине ХIХ в.
великий русский математик Николай Иванович Лобачевский, который создал
новую, неевклидову геометрию, называемую ныне геометрией Лобачевского.
Открытие Лобачевского было началом нового периода в развитии
геометрии. За ним последовали новые открытия немецкого математика Б. Римана
и др.
В настоящее время геометрия тесно переплетается со многими другими
разделами математики. Одним из источников развития и образования новых
понятий в геометрии, как и в других областях математики, являются
современные задачи естествознания, физики и техники.
Первоначальное понятие о многогранниках.
Многогранники и их элементы.
Проблемы нам создают не те вещи,
которых мы не знаем, а те, о которых
мы
ошибочно полагаем, что знаем.
В. Роджерс
|Определение. Многогранником называется тело,| |
|поверхность которого является объединением | |
|конечного числа многоугольников. | |
| | |
| | |
| | |
| | |
| | |
| | |
|В соответствии с общим определением | |
|выпуклого множества, многогранник является | |
|выпуклым[1], если вместе с любыми двумя | |
|своими точками он содержит соединяющий их | |
|отрезок. На рисунке показаны выпуклый и, | |
|соответственно, невыпуклый многогранники. | |
| | |
| | |
|Многоугольник, принадлежащий поверхности | |
|многогранника, называется его гранью, если | |
|он не содержится ни в каком другом | |
|многоугольнике, также принадлежащем | |
|поверхности многогранника. | |
|Стороны граней называются рёбрами | |
|многогранника, а вершины – вершинами | |
|многогранника. | |
|Отрезки, соединяющие вершины многогранника, | |
|не принадлежащие одной грани, называются | |
|диагоналями этого многогранника. | |
|Определение. Многогранник называется | |
|правильным, если все его грани – равные | |
|правильные многоугольники и из каждой его | |
|вершины выходит одинаковое число рёбер. | |
| |Грани|Вершины |Рёбра | |
|Тетраэдр |4 |4 |6 | |
|Куб |6 |8 |12 | |
|Октаэдр |8 |6 |12 | |
|Додекаэдр |12 |20 |30 | |
|Икосаэдр |20 |12 |30 | |
|Призма n-угольная |2n |3n |n+2 | |
|Пирамида n-угольная|n+1 |2n |n+1 | |
|Теорема Эйлера. |Для числа граней Г, числа |
| |вершин В и числа рёбер Р |
| |любого выпуклого многогранника|
| |справедливо соотношение: |
| |Г+В – Р=2 |
|Принцип Кавальери: |Если два тела могут быть |
| |расположены так, что любая |
| |плоскость, параллельная |
| |какой-нибудь данной плоскости |
| |и пересекающая оба тела, даёт |
| |в сечении с ними равновеликие |
| |фигуры, то объёмы таких тел |
| |равны. |
Призма.
|Определение. Призма – многогранник, | |
|составленный из двух равных многоугольников | |
|A1A2…An и B1B2…Bn, расположенных в | |
|параллельных плоскостях, и n | |
|параллелограммов. | |
|Два равных многоугольника, лежащие в | |
|параллельных плоскостях, называются | |
|основаниями призмы (A1A2…An
| | скачать работу |
Другие рефераты
|