Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах
Другие рефераты
Министерство общего и профессионального образования
Российской Федерации
Кабардино-Балкарский Ордена Дружбы народов Государственный
Университет им. Х.М.Бербекова
Химический факультет
Кафедра неорганической и физической химии
КВАЛИФИКАЦИОННАЯ РАБОТА
на тему:
“Исследование совместного электровосстановления гадолиния и криолита в
галогенидных расплавах”
Дипломник: студент 4 курса ХФ
______________Жекамухов А.Б.
Научный руководитель: доктор
химических наук, профессор
кафедры физической химии
__________________Кушхов Х.Б.
рецензент:
Нальчик 1999
Содержание
стр.
Введение……………………………………………………………………4
Глава I.
Строение и электрохимическое поведение расплавленных
галогенидных систем содержащих гадолиний и алюминий.……………6
1.1.1.Строение индивидуального расплава трихлорида гадолиния.………..6
1.1.2. Строение растворов расплава трихлорида гадолиния в хлоридах
щелочных металлов..………………………………………………..……..….8
1.1.3. Строение растворов расплава трихлорида гадолиния в хлоридно-
фторидных расплавах..………………………………………………..………10
1.1.4. Строение гадолинийсодержащих фторидных расплавов.…...………11
1.2. Электрохимическое поведение гадолинийсодержащих галогенидных
расплавов……………..………………………………………………..………16
1. Электрохимическое поведение гадолинийсодержащих хлоридных
расплавов.…………..………………………………………………..……..16
2. Электрохимическое поведение гадолинийсодержащих фторидных
расплавов.…………..………………………………………………..……..19
1. Строение и химические свойства алюминийсодержащих галогенидных
расплавов.………..………………………………………………..…....21
2. Электрохимическое поведение алюминийсодержащих галогенидных
расплавов.………..………………………………………………..…....24
Глава II.
Методы исследования и методика проведения экспериментов.
1. Выбор электрохимических методов исследования электродных процессов в
расплавленных средах и применяемая аппаратура.……..…....28
2. Конструкция высокотемпературной кварцевой электрохимической ячейки и
электродов.…………………………………………………..37
3. Методика получения безводного хлорида гадолиния.……………...39
Глава Ш.
Исследование совместного электровосстановления гадолиния и алюминия в
галогенидных расплавах.
3.1. Исследование электровосстановления фторалюминат-иона на фоне
хлоридного расплава KCl-NaCl, влияние фторид-иона..…………...40
2. Исследование совместного электровосстановления фторалюминат-
иона и хлоридных комплексов гадолиния на фоне хлоридных и хлоридно-
фторидных расплавов………………………………….……...46
Выводы……………………………….……………………….……………...52
Литература…………………….…….……………………….……………....53
ВВЕДЕНИЕ.
Судя по последним публикациям, нынче довольно трудно отметить те
стороны жизни, где бы не находили применение редкоземельные элементы. Эти
металлы и их сплавы обычно извлекаются из хлоридных и фторидных систем.
Соответственно существует достаточно большое количество работ по хлоридным
расплавам, однако по хлоридно-фторидным и фторидным системам, особенно по
многокомпонентным фторидным расплавленным солям опубликовано довольно
ограниченное число работ. [1]
На основе РЗМ получают многие уникальные материалы, которые находят
широкое применение в различных областях науки и техники. Например, РЗМ
используют как добавки к стали и в сплавах с другими металлами, в
производстве материалов, адсорбирующих водород (например, LaNi5), как
добавки к ядерным материалам, в качестве пирофорных материалов, в
специальной керамике, оптических стеклах (стекла для TV-экранов), в
производстве катализаторов для утилизации выхлопных газов, а также в
получении магнитных материалов (например (Nd1-xDyx)15Fe77B8 или (Nd1-
xDyx)15Fe76B8) и так далее.
Перечисленное выше – лишь небольшая часть из списка областей
применения РЗМ. Развитие высоких технологий все более и более вовлекает
использование РЗМ, степень чистоты которых должна быть очень высока. В этом
отношении не будет преувеличением отнести РЗЭ к материалам XXI века.
Перспективным способом получения чистых РЗМ и их сплавов с другими
металлами является электролиз расплавленных солей РЗЭ, а также их смесей.
Для эффективного использования электролитического метода получения РЗМ
необходимо располагать надежной информацией об электрохимическом поведении
комплексов, образуемых ионами РЗЭ в расплавах, а также химических реакциях,
сопровождающих процессы электроосаждения. Поэтому является необходимым
выяснение механизма электровосстановления комплексных ионов РЗЭ, в
частности совместного электровосстановления гадолиния и криолита в
галогенидных расплавах.
Глава I.
Строение и электрохимическое поведение расплавленных галогенидных систем,
содержащих гадолиний и алюминий.
1. Строение индивидуального расплава трихлорида
гадолиния.
Кристаллические хлориды элементов от лантана до европия, включая
гадолиний, имеют гексагональную решетку, а от диспрозия до лютеция (также и
хлорид иттрия),- моноклинную. Температура плавления хлоридов РЗЭ постепенно
снижается от лантана до диспрозия, а затем снова возрастает до лютеция;
летучесть хлоридов увеличивается с возрастанием порядкового номера
элемента, т.е. с увеличением ионного радиуса.
Безводные трихлориды очень гигроскопичны и расплываются на воздухе.
Хорошо растворяются в воде и спирте. Поглощают NH3, выделяя теплоту и
образуя аммиакаты LnCl3.n NH3. Заслуживает внимания тот факт, что
монокристалл GdCl3 при низких температурах становится ферромагнетиком при
2,2?К [2]. В данной работе отмечается, что в ряду лантаноидов трихлориды
от La до Gd включительно изоструктурны (гексагональная типа UCl3). Здесь же
отмечается, что GdCl3 – вещество с высокой температурой плавления (602?С),
в вакууме при высокой температуре летуче, что подтверждается данными по
давлению паров [3].
Под строением ионного расплава понимают состав и взаимное
расположение частиц, из которых он состоит. Первые выводы о строении ионных
расплавов были сделаны на основании изучения их физико-химических свойств.
Значительный прогресс в наших представлениях о строении ионных расплавов
был достигнут в результате рентгеноструктурных и спектроскопических
исследований. Вопреки прежним положениям, в соответствии с которыми
жидкости вообще и ионные расплавы в частности считались отдаленными
аналогами газов, а из рентгеновских исследований вытекает, что их нужно
рассматривать как аналоги твердых кристаллических структур.
Однако если в структуре твердых кристаллов трихлорида гадолиния
имеются как ближний, так и дальний порядок во взаимном расположении частиц,
то в ионном расплаве сохраняется лишь ближний порядок. При плавлении
кристаллов этого вещества дальний порядок разрушается. Рентгеновские
исследования [4] несколько неожиданно показали уменьшение межионных
расстояний в этом случае. Данный факт объясняется тем, что увеличение
объема ионного вещества при его плавлении происходит не за
| | скачать работу |
Другие рефераты
|